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HORIZONTAL AND CONTACT FORMS 

ON CONSTRAINT MANIFOLDS 

OLGA KRUPKOVA AND MARTIN SWACZYNA 

ABSTRACT. Differential forms on constraint submanifolds of jet bundles are investi­
gated. The horizontalization and contactization operators are generalized, and canon­
ical decomposition of forms, arising due to the existence of the constraint structure, is 
found. 

1. INTRODUCTION 

Horizontal and contact forms play an essential role in many geometrical construc­
tions on jet bundles. Namely, the operators of horizontalization and contactizations, 
and the arising canonical decomposition of differential forms into a sum of hori­
zontal and contact parts of different contact degree are fundamental tools in the 
calculus of variations and the theory of differential systems on fibered manifolds, 
as well as in numerous applications in mathematical physics. Recently, there has 
been an interest in extending results to the case of non-holonomic systems which are 
modelled as differential systems on submanifolds of jet manifolds. Yet, the case of 
non-holonomic mechanics has been intensively studied (cf. e.g. [l]-[3], [7]-[16], [18], 
and others), and the corresponding constraint structure has been discovered [7], [13]. 
This is the case where the underlying fibered manifold is of the form n : Y -> X) 

where dimX = 1, and the constraint structure is given by a fibered submanifold Q 
of 7Ti : JlY -> Y, endowed with a naturally arising distribution, called canonical 
distribution or Chetaev bundle over Q. 
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The aim of this paper is to study the structure of differential forms on constraint 
submanifolds. We construct operators of horizontalization and contactizations of 
different degrees, adapted to the constraint structure. As the main result we obtain 
a Theorem on canonical decomposition of differential forms on constraint manifolds 
into a sum of constraint-horizontal and constraint-contact parts. 

2 . HORIZONTAL AND CONTACT FORMS ON FIBERED MANIFOLDS 

Let us recall briefly the calculus of horizontal and contact forms on fibered man­
ifolds, as developed in [4] and [5]. For an exposition we refer also to [6], [17]. 

In what follows, we consider a smooth fibered manifold 7r: Y -» X with dimX = 
1, dimY = m+ 1, and its first (resp. second) jet prolongation, JlY (resp. J2Y). 
Fibered coordinates on Y, associated coordinates on JXY, and those on J2Y) are 
denoted by (£,qa), (t,qa,qa)) and (tyq°,q°\qa) respectively, where 1 < a < m. We 
use standard notations 7Ti : JXY -» X, 7Ti,o : JlY -» Y, 7T2,I : J2Y -* J 1 ^ , etc. A 
section 5 of 7Ti is called holonomic if 5 = J1^ for a section 7 of 7T. A vector field f 
on JXY is called 7Ti-projectable (resp. ni^-projectable) if there exists a vector field f0 

on X (resp. on y ) , such that TVi • £ = f0 o 7Ti (resp. r7ri)0 • f = £0 ° ^1,0) • f is called 
TTi-vertical (resp. iti^-vertical) if T7Ti • £ = 0 (resp. Tirito • £ = 0). 

Denote by Aq(JxY) the module of differential g-forms on JlY over the ring of 
functions, rj £ Ag(J1F) is called ni-horizontal (resp. ni^-horizontat) if igq = 0 for 
every 7ri-vertical (resp. Tr^n-vertical) vector field f on JlY. The submodule of 7Ti-
horizontal (resp. Tr^rj-horizontal) <l-forms on J 1 Y will be denoted by A^-(J1!K) (resp. 
A£,(J1Y)). If r) e A ^ J 1 ^ ) , q > 1, one sets for every point y = J 2 7 e J2Y, and 
every system of vector fields { i , , . . , ^ G TyJ

2Y 

(2.1) ftr/(J27)(£i,.. • - U) = r}(Jll)(TxJ
l! • Tira • £ i , . . . , T . J x

7 - TTT2 • £<). 

For a function / on JlY, h is defined simply by hf(J2/y) = / ( J^7) . The mapping 
h : Aq(JxY) -» A^-(J2y) is called horizontalization with respect to the projection 
7r. r) e Aq(JxY) is called contact if Jlry*rj = 0 for every section 7 of ir. Consequently, 
every g-form for q > dimX is contact. The module of contact g-forms on JXY is 
denoted by ft9(J1F). Note that n 1 ( J 1 y) is locally generated by the following forms, 

(2.2) u)° = dqa - q° dt, l < < r < r a , 

called canonical contact 1-forms. Putting 

(2.3) pn = 7^77 - hrj 

one gets a mapping p : Aq(JlY) -> n g ( J 2 y) , assigning to every g-form 77 on JXY a 
contact q-foim prj on J2Y. p is called contactization with respect to the projection 
7r. For a function / , pf = 0. 

The mappings h and p have the following properties: 
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Proposition 2.1 [4]. Let A,!/ € A ^ J 1 ^ ) , ^ € hP(JxY). 

(1) h(\ + rj) = h\ + hrj, h(\ Au) = h\A hu. 
(2) p(\ + rj) = p\ + prj, p(\ Au) =p\Apu+p\Ahu + h\Apu. 
(3) h(frj) = (f o TT2,I) • /IT/, P(/T/) = (/ o 7r2,i) • prj for a function f. 
(4) rj is horizontal (resp. contact) if and only if prj = 0 (resp. hrj = 0). 
(5) If q > dimK then hrj = 0, prj = n^irj-
(6) hrj is a unique horizontal form such that for every section^ ofn the condition 

Jl^*rj = J2j*hrj is satisfied. 
(7) For every section 7 of n the condition J2j*prj = 0 is satisfied. 
(8) If rj is TTifl-horizontal then both hrj and prj are ^^-projectable. 
(9) p77 is 7r2,i-projectable if and only if hrj is iT2ti-projectable. 

(10) If(j> is an isomorphism ofn then hJl(j)*rj = J2(j>*hrj, pJl(j)*rj = J2(f>*prj. 

A contact g-form 77 is called 1-contactiifor every 7Ti-vertical vector field £ the (q-
l)-form ^77 is horizontal; 77 is called i-contact, i > 1, if if 77 is (i - l)-contact. Denote 
by £}g""M(J1Yr) the module of z-contact g-forms on JlY. We have the following 
Decomposition Theorem: 

Theorem 2.1 [4]. Every rj e Ag(J1F) admits a unique decomposition 

(2.4) 77^77 = 779_i + rjq 

into a sum of a horizontal and 1-contact form on J2Y if q = 1, and into a sum of 
a (q- l)-contact and q-contact form on J2Y if q > 1, respectively. 

Obviously, in the above formula, 770 = hrj) and if q = 1, 771 = prj. The operator 
assigning to 77 its i-contact part 77̂  is denoted by p^ and called i-contactization. In 
fibered coordinates, pq-\rj (resp. pqrj) is expressed as a linear combination of q-forms 
uai A w ^ A ' - -a/7*"1 A dt (resp. uai A ua* A • • -u^* 1 A ua<). 

Corollary 2.1. The mappings h andpi, 1 < i < q, restricted to Ay(JxY) save the 
order (i.e. they map q-forms on JlY to q-forms on JXY), and 

A1,(j1r) = A1,(j1F)en0 '1(j1y), 
[' ] A?-(j1r) = n1'«-1(j1Y) e n°>a(jlY), q > 1. 

3. T H E NON-HOLONOMIC CONSTRAINT STRUCTURE 

Let k < 771 be an integer. A non-holonomic constraint of codimension k in JlY is 
defined to be a fibered submanifold 771,0 \Q - Q -> Y of codimension k of the fibered 
manifold nli0 : JXY -> Y (cf. e. g. [7], [13], [15], [18]). We denote by 1 the canonical 
embedding of Q into JXY. Locally, Q is given by equations 

(3.1) /* = 0, 1 < i < k, where rank f f-P J = k, 
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or, in normal form, 

(3.2) qm-k+i=9%q'',q\q2,~-,qm-k), - < < < * . 

The submanifold Q is naturally endowed with a distribution, called the canonical 
distribution [7], or Chetaev bundle [13], denoted by C. It is annihilated by a system 
of k linearly independent (local) l-forms, called canonical constraint 1-forms, as 
follows: 

df% 

(3.3) v% = i*(t>%, where cf>% = f%dt+ - ^ , l < i < f c , 

i.e., 

m—k rx i 

(3.4) <p{ = - Y ]fl ^ + Sv™-** , 1 < t < *-

The ideal in the exterior algebra of forms on Q generated by the annihilator of C 
is called the constraint ideal, and denoted by X(C°), or simply X\ its elements are 
called constraint forms. The pair (Q,C) is then called a (non-holonomic) constraint 
structure on the fibered manifold IT [7], [8]. 

Let Q be the lift of Q in J2Y, i.e. the manifold of all points J2j 6 J2Y such that 
J1 j eQ.lf Q is given by (3.2) then equations of Q are 

/Q ^ .m—k-ft _ A(± _<r '1 '2 ^m—k\ '-m—k+i __ ^9 
(3.5) q =g (t,q ,q ,q , . . . , g ) , g T = — . 

We denote by p : Q -> Q the corresponding projection (i.e., p = 7T2.iU). The 

distribution C on Q, defined by 

(3-6) Typ(C(y))=C(p(y)), 

for every y G Q, is called the /iff of C. We have dimQ = 3ra + 1 — 2fc, rankC = 
3ra + 1 - 3fc, corankC = corankC = fc. The annihilator of C is locally spanned by 
the l-forms (p% = p*<p%, 1 < i < k, [10]. In what follows, we denote by X the ideal on 
Q, generated by C°. 

A section 7 of 7T is called Q-admissible if Jlr)(x) E Q for all x 6 dom7. An iso­
morphism <j) of 7r is called Q-compatible if J1<I>(Q) C Q. Obviously, Q-compatible 
isomorphisms transfer Q-admissible sections into Q-admissible sections. Similarly 
the concept of a Q-admissible section and a Q-compatible isomorphism of 7r is de­
fined. By definition, every Q-admissible section is Q-admissible, every Q-compatible 
isomorphism is Q-compatible, and p o J2(j> = Jl(j> o p. 

If ^ is a local diffeomorphism of Q, recall that the canonical distribution C is said 
to be ^-invariant if at each point z of Q, Ti/)(C(z)) C C(ip(z)). 
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Proposition 3.1. IfC is ip-invariant then ip*X C X. Moreover, iftp = Jl(j> where $ 
is a Q-compatible isomorphism ofn then also J2</)*X C X. 

Proof. It is sufficient to prove the assertions for constraint 1-forms. By assumption, 
for every constraint 1-form (p one has at each point z G Q for all vectors £ 6 C(z) 
the following: i ^ V O O = ^ M * ) ( 0 = P M * ) ) ( - ^ ' 0 = ° - I f additionally ^ = Jl<j) 
where $ is a Q-compatible isomorphism of 7r then for all the canonical constraint 
l-forms, J2<j>*p*ipi = (po J 2 0 ) V = (JV o p ) y = P*J W e p*-I C X. Now, for 
any constraint 1-form ip on Q one has <p = aip*ip%, where a» are functions on an open 
set in Q, hence J2<£> = (a* o J20)J V p V eX. D 

4. HORIZONTAL AND CONTACT FORMS ON CONSTRAINT MANIFOLDS 

If Q is a constraint in JlY, we denote by Aq(Q) and Aq(Q) the module of g-forms 
on Q, and Q, respectively. The concepts of a 7Ti-horizontal and contact form directly 
transfer to forms on Q: n G Aq(Q) is called iri-horizontal if ^77 = 0 for every 7Ti-
vertical vector field on Q. 77 is called contact if Jlry*rj = 0 for every Q-admissible 
section of 7r. Notice that contact 1-forms on Q are locally generated by 1-forms i*ua', 
1 < a < m, i.e. do} - qldt, 1 < I < m - fc, dqm-k+i - ^d*, 1 < i < fc. We denote 
by Aq

x(Q)) resp. Ay(Q), resp. £lq(Q) the submodule of 7ir-horizontal, resp. 71*1,0-
horizontal, resp. contact g-forms on Q. Similar definitions and notations are used for 
Q. Apparently, it holds 

(4.1) A]r(Q) = A1
x(Q)®Sl1(Q)> A*Y(Q) = W(Q), q>l, 

and similarly for Q. This enables one to define the mappings h and p for forms 
on Q in a similar way as in the unconstrained case, making use of the projection 
p: Q —• Q. For 77 G Aq(Q), hn and prj are defined on Q. 

In what follows, we shall study the structure of forms on Q and Q which is 
connected with the existence of the canonical constraint structure defined by the 
constraint ideal X. We denote by Aq(X) the module of constraint a-forms on Q, and 
by Ay(X) the submodule of 7Ti^-horizontal constraint g-forms. Similar notations 
are used if 2", the constraint ideal on Q is considered. By A°(X), resp. A°(X) we 
understand {0}. Note that Aq(X) c W(Q). 

We can construct quotient modules Aq(Q)/Aq(X), resp. Aq(Q)/Aq(X), the ele­
ments of which are equivalence classes [O.]A«(X). resp. [a]A9m of g-forms modulo 
constraint o-forms. The corresponding module operations, as well as the wedge prod­
uct of classes are defined as usual. 

Definition 4 .1 . 77 G Aq(Q), resp. 77 G Aq(Q) is called constraint-horizontaliii^n € X 
for every 7Ti-vertical vector field f G C, resp. i^rj G X for every 7T2-vertical vector field 
t-ec. 

In particular, a 1-form 77 on Q (resp. on Q) is constraint-horizontal if i^q = 0 for 
every 7Ti-vertical vector field f G C (resp. for every 7r2-vertical vector field f G C). 
Note that constraint-horizontal 1-forms take the form rj = rjo + ip, where 7/0 is a 



264 OLGA KRUPKOVÁ - MARTIN SWACZYNA 

horizontal form and (p is a constraint form. Constraint-horizontal g-forms, q > 1, 
coincide with constraint forms. 

If h : Aq(Q) -> Aq
x(Q), and p : Aq(Q) -» W(Q) are the "unconstrained" hor-

izontalization and contactization mappings, we can define corresponding mappings 
between quotient modules: 
(4.2) 

h : A«(Q)/A"(J) -» (A£(Q) © A«(2))/A«(2), ft[ij]A,(I) = N A , ( i ) = hrj + <p, 

(4.3) p:A«(Q)/A«(I)->n9(Q)/A«(2), P M A . ( I ) = N A . ( i ) = W + V . 

which are defined on equivalence classes modulo constraint g-forms (above, ip runs 
over constraint g-forms defined on Q). 

Definition 4.2. The mappings h and p will be called constraint horizontalization 
and constraint contactization. 

Obviously, if p[r)]A<*(x) = [0]A*(Z) then the equivalence class fa]A* (2) -S constraint-
-horizontai We say that the equivalence class fa]A«(2) -s constraint-contact if 
f̂a]A«(2) = [0]A9(2)« Notice that constraint forms are both horizontal and contact 

with respect to these mappings. 
Using the properties of the unconstraint horizontalization and contactization we 

immediately get the following properties of h and p: 

Proposition 4.1. Let 77, A E Aq(Q), u G AP(Q), f a function on Q. Consider the 
projection p: Q —•> Q. It holds 

h[fv]\HX) = (f°p)' %]A*(Z) , 

p[fr}]A*(x) = (f°p) 'P[V]A*(X)» 

^([A]A«/(2) + fa]A*(2)) = ^[A]A«(2) + ftfa]A*(2) > 

(4.4) ft([A]A«(2) A MAP(Z)) = ft[A]A«(j) A ^HAP(Z) , 

P(MA«(2) + fa]A«(2)) =PWAi(Z) +Pfa]A«(Z) i 

P([A]A*(Z) A MAP(Z)) =P[A]A«(2) Ap[w]Ap(i) 

+ P[A]A«(Z) A fc[w]AP(Z) + MAU*(Z) A P H A P ( 2 ) • 

Proposition 4.2. 

(1) The equivalence class fa]A*(z) is constraint-horizontal (resp. contact) if and 
only ifp[rj\Ai(x) = [0]A«(Z) (resp. %]A*(Z) = [0]A«(2)J. 

(2) 1/g > dimK tten %]A*(Z) = [0]A«(z)> £fa]A*(Z) = [ P ^ I A ^ Z ) -

(3) /ifa]Aq(2) w a unique class of constraint-horizontal q-forms such that for 
every Q-admissible section 7 O/7T the condition J17*'fa]A?(2) = «727*Afa]A«(z) 
is satisfied. 

(4) For eve?!/ Q-admissible section j of ir the condition J21*p[rj]A<i(x) = 0 is 
satis/ied. 
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(5) If[rj]\<i (x) is 7ii^-horizontal then both hty]^ (j) andp[rj]^i (j) are p-project-
able. 

(6) P[T}]A<I(X) isp-projectableiffh[rj]kq(x) is p-projectable. 
(7) If <j> is a Q-compatible isomorphism of n, leaving invariant the canonical 

distribution then 

(4.5) AJVMA*(I) = J V % W ) , pJVWA*(I) = •7VPMA«(Z) • 

Proof. (l)-(6) follow directly from the definitions. (7) is a consequence of Proposi­
tion 3.1. and definition of h and p. Indeed, since (j> transforms constraint forms into 
constraint forms, we obtain 

A J V * W A « ( I ) = M J V ^ A i p ) = [^^^{X) 

= [ JVHA,(Z) = ^ N A . ( Z ) = ^ V % W ) , 

and similarly for p. • 

Now, we can see that the following decomposition theorems take place: 

Theorem 4 .1 . Every equivalence class ofl-forms admits a unique decomposition 

(4.7) P*[lW(x) = % ] A - ( Z ) + PMA-(Z) • 

Corollary 4.1. For rj = df (4.7) ^ives a unique decomposition of df into a con­
straint-horizontal and constraint-contact part (constraint-horizontal and constraint-
contact differential), respectively: 

(4.8) P*W]AHX) = h[df]Ai{1) + p[4f]A-(z) • 

It holds 

h[df]AHx) = ^jfdt + <p, p[d/]A.(i) = ^ w ' + ^ w ' + V, 

where <D runs over constraint 1-forms on Q, and 

dt dt dqlQ + dq™~k+i9 * dq*9 ' 
( > ) dcf = df dg' df 

dq9 dq8 dq8 dqm~k+i 

(above, summation over I = 1 , . . . , m — k, and i = 1 . . . , k is understood). 

The operators dc/dt and dc/dql will be called constraint total derivative and con­
straint partial derivative respectively. Notice that both they are directional deriva­
tives with respect to vector fields belonging to the lift of the canonical distribution 
C; in particular, dc/dt = dp, the Lie derivative along a semispray V eC. 

Restricting considerations to classes of 7ri>0-horizontal 1-forms the following de­
composition of quotient modules follows: 
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Theorem 4.2. It holds 

(4.10) Al(Q)/AlW = ((A'x(Q) © A\T))IK\t)) 0 (&(Q)/h}(T)). 

A contact form n e Aq(Q) is called 1-contact if for every ^-vertical vector field £ 
on Q the (q- l)-form i^n is horizontal. Let i > 1. rj € A9(Q) is called i-contacHf for 
every 7Ti-vertical vector field £ on Q) i^n is (i - l)-contact. Denote by Ctq~%ii(Q) the 
submodule of i-contact (/-forms on Q. Similar definitions and notations take place 
for forms on Q. 

If q > 1 and pi : Aq(Q) -> ftg~M(Q) is the "unconstrained" z-contactization 
mapping, we can define a corresponding mapping between quotient modules: 

(4 11) Pi : AqW/AqW -> ( ^ " ^ ) + Aq&))/Aq& > 

where <p runs over constraint (/-forms. Note that above, + is not a direct sum. 

Definition 4.3. pi is called constraint i-contactization. 

Similarly as above, we get: 

Theorem 4.3. Every equivalence class of q-forms (q > 1) admits a unique decom­
position 

(4.12) P*MA*(X) = Pq-i[ri]A*(i) +Pq[ri\\*(X) • 

Obviously i(pq[rj]AI(I) = 0, then the class [T7]A«(Z) is constraint (q— l)-contact, and 
if pq-i[rj]Ai(i) = 0, then [r}]^^) is constraint (/-contact. Notice that since constraint 
a-forms belong to the zero class, they are both (q — l)-contact and g-contact with 
respect to these mappings. 

Theorem 4.4. The following decomposition takes place: 

(4.13) A£(Q)/A£(I) = ((^-\Q)A^(^)/AUX))®((n^(Q)+A^(I))/AU^) • 
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