WSGP 25

Lenka Czudkova; Jitka Janova; Jana Musilova
Trivial constraint variational problem

In: Martin Cadek (ed.): Proceedings of the 25th Winter School "Geometry and Physics”. Circolo
Matematico di Palermo, Palermo, 2006. Rendiconti del Circolo Matematico di Palermo, Serie II,
Supplemento No. 79. pp. [67]-74.

Persistent URL: http://dml.cz/dmlcz/701766

Terms of use:

© Circolo Matematico di Palermo, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/701766
http://dml.cz

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie 11, Suppl. 79 (2006), pp. 67-74

TRIVIAL CONSTRAINT VARIATIONAL PROBLEM
LENKA CZUDKOVA, JITKA JANOVA AND JANA MUSILOVA

ABSTRACT. In this paper we study trivial constraint Cartan forms arising from the
variational theory of mechanical systems with non-holonomic constraints proposed
recently by Krupkova and Musilovd. After remarks indicating obstructions in solving
trivial constraint variational problem in general we discuss some special but not
trivial situations.

1. INTRODUCTION

Physical systems are often subjected to various types of constraints. Clearly, it is im-
portant to derive corresponding equations of motion and then to deal with a question
of their variationality. However, only the theory of holonomic constraints is satis-
factorily elaborated. Non-holonomic systems are still studied by many authors with
different approaches (see References).

We adopt the geometrical theory of first-order mechanical systems with non-holo-
nomic constraints on jet manifolds developed by Krupkové (see [2]) and the concept
of constrained variationality proposed later by Krupkovd and Musilova (see [6], [7]).
Using the results of these theories (briefly summarized in Section 2) we study trivial
constraint Cartan forms, i.e. forms leading to identically zero left-hand sides of con-
strained equations of motion (Section 3). We there refer to some difficulties connected
with the quite general formulation of the problem. Then we discuss some special
situations.

We accept the standard notation of geometrical objects. Let w : Y — X be a fibred
manifold, dimY = m+1,dim X = 1, 7, : J'Y — X its r-jet prolongation (throughout
this paper it will be 1 <7 <2) and 7, : J'Y — J*Y, 0 < s <r, J°%Y =Y canonical
projections. Associated fibred chart on J™Y arising from the fibred chart (V,4) on Y,
V CY is an open set, ¥ = (t,q°), 1 < o0 < m, takes the form (V;,9,), V; = w;l V),
Y1 =(t,9%,¢°), Y2 = (t,q°,4°,§°). Asectiond : I — J'Y of m,, I C X is an open set,
is called holonomic if there is a section 7y of 7 such that § = J™.
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A vector field £ on J'Y is called m,.-projectable if there is a vector field & on X
such that Tm. & = & o m, and is called m-vertical if Tn, 6 = 0. A form n on J'Y is
called m,-horizontal if i¢n = O for every m,-vertical vector field on J"Y and is called
contact if J™y*n = 0 for every section 7y of 7. Analogously, a m,s-projectable vector
field, m, s-vertical vector field and m, s-horizontal form is defined. By means of contact
1-forms w’ = dg° — ¢°dt and w° = d¢° — §?dt the basis (dt,w?,d¢?) of 1-forms on J'Y
and the basis (dt,w?,w?,d§°) of 1-forms on J2Y can be introduced. For every k-form
non J'Y it holds: 7,1 = pk—17 + pkn where py_17 is (k — 1)-contact component of
n and pk7 is k-contact component of . A k-form 7 is called (k — 1)-contact if pyn =0
and is called k-contact if p_1n = 0.

A distribution D on J'Y is defined-as a mapping assigning to every point z € JY
a vector subspace D (z) C T,J"Y. A distribution can be generated either by (local)
vector fields &, on J'Y, ¢« € Z, or by its annihilators, i.e. (local) 1-forms 7, on J'Y,
k €K, ign. =0 for every « € Z, k € K where Z, K are sets of indices. We will write

D=span {{|teT}, D°=span{n,|kEK}.

A section ¢ of 7, is called an integral section of a distribution D if 6*n = 0 for every
n € D°.

2. BASIC GEOMETRICAL CONCEPTS
This section contains a brief outline of basic geometrical concepts that we will need.
For proofs and more details see (2], [3], [6], [7]-

Unconstrained mechanical systems (see [2]).
We will start from the concept of dynamical form E, defined as a 1-contact mye-
horizontal 2-form on J2Y. Such a form is in every fibred chart expressed as follows:

E=E,(t,¢,4¢,§)de’ Adt, 1<o,p<m.
Having on mind physical applications we will assume that it holds
Eq (4,4, ¢°) = A (t,¢°,¢°) + Bou (1, 4%, ¢°) §” -

For every dynamical form E there exists a 2-form a on J'Y, called Lepagean form
associated to E, such that pja = F, i.e.

a=A,w’ ANdt+ By, ANd§” + Fy w0’ AW

where F,, = —F,, are some functions on J'Y. The equivalence class [a] with the
equivalence relation a; ~ a3 if @y — ay = F,, w” Aw” is called a Lepagean class of E,
or a first-order mechanical system associated to E. Finally, by a path of a dynamical
form E, or by a path of a mechanical system [a], we mean a section 7y of 7 satisfying
the condition

EoJ*y=0, ie A,+B,§" =0 along J%y.

The last equations are called (unconstrained) equations of motion.
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Concept of unconstrained variationality (see [2], [3]).
A dynamical form E is called (locally) variational if in a neighbourhood of every
point z € J'Y there exists a (local) Lagrangian A\ = L (t,q°,¢°) dt such that

_oL_d oL
77 0¢°  dt 9¢°
The equations of motion are then called Euler-Lagrange equations.

Theorem 1. A dynamical form E is locally variational iff the corresponding mechan-
ical system [a] contains a closed representative ag. Such a representative is unique.

Remark 1.

(a) The closed representative ag in a variational mechanical system [a] can be
locally expressed as e.g. ag = df where a 1-form 6 = Ldt + %w” is called
Cartan form.

(b) A mechanical system [o] is variational iff functions A4,, By, satisfy the well-
known Helmholtz conditions.

A Lagrangian X for which the corresponding dynamical form F vanishes identically
is called a trivial Lagrangian.

Remark 2. Cartan forms 6, and 6, correspond to the same variational system iff
0, — 6 = dh where h (t,q°) is a function on J1Y.

Mechanical systems with non-holonomic constraints (see [2]).
Consider a mechanical system subjected to a system of (local) non-holonomic con-
straints

‘ oft
fl(t’qa;q.a):()’ rank (aqfo’):k, lglgk, ISkSm_ly
or, in a more frequent normal form
qm‘k+i—gi(t,q”,ql)=0, 1<l<m-k.

This system determines a constraint submanifold Q of J'Y fibred over Y of dimension
2m + 1 — k. Obviously, a set of paths now consists only of those sections v of 7
satisfying the condition ffo Jly =0 (so-called Q-admissible sections, see [5], [16]).

Let us recall concepts appearing in this theory. First, on an open set U in J'Y,
UNQ # 0, define (local) constraint 1-forms

i
¢i=fidt+g—qaw” and forms o' =i¢", 1<i<k
where ¢ : Q — J'Y, 1 (t,¢%,¢") = (t,¢°,¢', 9" (t,¢",¢°)) is canonical embedding of Q
into JY'.
Proposition 1.

(a) Forms ¢' = 1*¢* where ¢* run over the set of all constraint 1-forms on the open
sets covering @ generate a distribution C on Q of corank k.

(b) A sectiony of  satisfies the condition fioJ'y = 0 iff J'7 is an integral section
of the distribution C.
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Distribution C on @,
C® = span {y'} = span {¢’¢'},
is called canonical distribution. Further, forms ¢’ generate the constraint ideal
I(C®) ={vin¢'|¢iisaformon Q}.
Its subset of k-forms will be denoted by Z;(C®). Finally, taking into account the fact
¢ = —g—zlw + W™ = gg[w +dgm Rt — gidt

we can introduce the new basis (dt,w!, ¢, dg') of 1-forms on Q.

Define the equivalence relation t*a; ~ t*ag by t*a; —t*ay = Fjs w Aw®+x; At where
Fis = —Fy are some functions on Q and ¥; is a 1-form on Q. Clearly, t*a; ~ t*ay iff
ay ~ oy, ie. iff ai,az € [a). The equivalence class [ag] = [t*a] where ag = ¢*a for
some a € [a] is called a constrained mechanical system on Q related to the mechanical
system [a]. A direct calculation gives

ag = AW Adt+ Biyw Adg® + Flaw Aw® + xi A

where functions A;, Bj, depend not only on A,, B, but on the non-holonomic con-
straints ¢* as well:

- k 391‘ i agi
A= [Al +ZAm Ic+_18 ] +Z(Blm k+i +ZBm k+j,m— k+16 t)( + g ,q )] oL,
j=1

k o .
Bls = [Bls + Z (Bl,m—k+1 ggs + Bm k+zsgg:) + Bm —k+jm—k+i 3 Zgj gg ] otL.
i=1 q°

A path of a constrained system [ag) is defined in an analogy to an unconstrained case,
i.e. as a section 7y of 7 satisfying the conditions

fioJ'y=0 and A, + B,i*=0 along J%y.
These equations are called reduced equations of motion.

Remark 3. The above geometrical approach is equivalent to the physical one consid-
ering the constraint force of the (local) form

1
__'u,'afawa/\dt.
Such a force is called Chetaev force and functions u on J'Y are called Lagrange
multipliers.

Concept of constrained variationality (see [6], [7]).
Concept of variationality for a system with non-holonomic constraints is defined
through the property of variational unconstrained case (cf. Theorem 1).

Definition 1. A constrained mechanical system [ag] is called variational if it contains
a closed representative.
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Remark 4.

(a) A constrained system arising from the variational one is obviously variational
(in the previous sense). The converse is not true in general
( )

b) A constrained system is variational iff so-called constraint Helmholtz conditions
are fulfilled (see [6], [7])
c

(c) Contrary to an unconstrained case, the closed representative of a variational
constrained system need not be unique. Two closed representatives differ by
a closed form p = Fjsw' Aw® + xi A

Now, for the simplification of the following formulas put

. o2 , 0. d. a
-t — y S = a3 3,89
dq¢t  dt ¢ EYErd d¢t  dt ¢
where
o _0 o 0 L0 40
3qt - 3ql aql 3qm-k+j’

+q + e 0
dt ot Ogm—k+3
Proposition 2. Let [ag)] be a variational constrained system. Then, on Q there exists
a representative ag € [ag] and a (local) 1-form
oL ‘
0= Ldt+mw + Lop—pi @

such that ag=df

where L and L4, 1 < i < k, are functions on Q.

By means of coefficients of the form 0 the reduced equations of motion can be expressed

as follows:

frodly=0, & (L) = Lnisie(g) =0.

Definition 2.

(a) A form 6 = Ldt + 2% w' + Ly_g4s 0" is called constraint Cartan form (cf. [4],
51, 7], [16]). S

(b) A form 7 = Tdt + —;w + Trn—kyi " where T and T,,_x4; are functions on Q
satisfying ¢ (T') —

Tm k+i € (g%) = 0 is called trivial constraint Cartan form.
Remark 5.

(a) Note that constraint Cartan forms are given by (k + 1) functions L, Lp_k:
on Q.

(b) Constraint Cartan forms 6, and 0, correspond to the same variational system
iff 6, — 6, = 7.

3. TRIVIAL CONSTRAINT CARTAN FORMS

After a brief summary of basic geometrical concepts we will discuss trivial constraint
. )

variational problem. First, we will demonstrate that its quite general formulation is
not elementary. Then we will discuss some special situations
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General remarks.

Proposition 3. All trivial constraint Cartan forms are given by closed forms p =
Fist Aws + xi A @t as AT = p.

Obviously, there always exist trivial constraint Cartan forms corresponding to p = 0,
i.e. 7 = dh where h (t,¢°) is a function on Q. On the other hand, for concrete choice
of constraints we can ask if there exist closed forms p # 0 as well. (Trivial constraint
variational problem is closely connected with a question of uniqueness of the closed
representative in a variational constrained mechanical system.)

Necessary and sufficient conditions for the existence of a closed form p # 0 are given
by constraint Helmholtz conditions (see [6], [7]) in which A; = 0, By, = 0 for every
1 <1, s <m — k. These conditions represent a system of PDE for coefficients in the
form p. Write down their quite general solution (i.e. write down form p explicitly) is,
of course, impossible. For this reason we will focus on some concrete situations only
and we will study a question of existence of a closed form p # 0. First, let us summarize
some useful formulas.

From the definition of trivial constraint Cartan form ¢; (T) - Tm_k+,~ & (gi) =0
where T, T},_+i are functions on Q we have

1) &1 (T) = Tn-k+ier ()
@) A
and i i
+ déTZt— =+ Tkt qug-jlm - aqiin]dt A
+ aqt -+ T’"—kﬂ' aqlg;zik+i - 34138;5—“;']“)[ At

@ At

(3) + 8Tm—k+i ]
alt(i,j)

[60Tm—k+z
(s
where the first term of (3) was modified using the partial derivative of (1) with respect
to ¢°.

For a given point of @, (1) and (2) can be regarded as a homogeneous system of

N = (m — k) (1 + 2=k£L) linear equations for k + N unknown values Tp,_k+, %,

¢} (T). This system has the rank N and thus its solutions generate a k-dimensional

vector space. For example, functions 52137‘_? and g (T) could be expressed as linear
combinations of free functions Tp,_k41,... , . Clearly, there arises a problem to

solve a system of partial differential equations with respect to T'. The solution can be
obtained in quite special situations only, not in general.

On the other hand, it can be seen from (3) that there are special types of constraints
such that p € Z(C°) for arbitrary Tym—k+i- Such constraints are given by condition
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el (g") =0 for every 1 <i <k, 1 <l<m~—k. This condition is fulfilled especially
for semiholonomic constraints and for constraints depending only on velocities. Let us
discuss these situations more precisely.

Semiholonomic constraints.

A system of non-holonomic constraints is called semiholonomic constraints if the
constraint ideal Z(C?) is differential, i.e. if dp? € Z,(C°) for every 1 < i < k. From
the definition following necessary and sufficient conditions for the constraints to be
semiholonomic can be obtained:

er(9') =0 P9 0, 1<i<k, 1<ls<m—k
: ’ 9gedag' ~ . T =D
Then, from conditions (1) and (2) we have

T=agd+b

where a; and b are functions of (t,q°) which fulfil €] (T) = 0. Functions T;,_k+; can
be chosen arbitrarily, i.e. p # 0 in general. Two special possibilities for ¥ can be
considered:

_ oT _ .
7"=Tdt+3—qlwl:(alql+b)dt+a,wl, T=Tmk+i "
Constraints dependent on velocities.
Consider ¢' = ¢' (¢') for every 1 <4 < k. Then again € (¢°) = 0 for 1 < i <k,
1 <1< m—k. Thus, p € Z,(C?),

aTm—k+i] .l i lem—k+i BT i
[Pt g [Wmcbes 9T 1,
p [ EY. TAe+ dt Dk tny

6ch—k+i 62T 1 i aTm—k+i i

- - —_— A

+[ aq Bq‘c'r‘q""’c“]w vt [8qm’k+1]alt(i,]‘) v

where T', Ty,_4: are solutions of (1), (2).

In special cases of the constraints it may happen that for all solutions of (1), (2)
it holds p = 0. Then, all trivial constraint Cartan forms are given by exterior deriva-
tives of the functions on @, i.e. 7 = dh. In such a case the closed representative of
every variational constrained mechanical system [ag] is unique. Let us present con-
crete example in which the conclusion p = 0 can be obtained e.g. most simply from
constraint Helmholtz conditions:

m=3, k=1, g'=¢ =-const- [(q1)2+ (qz)z] .
Note that for m = 2 and analogous constraint g' = ¢ = const - (¢!
p # 0 exists, e.g. p = dg! A .
The same conclusion p = 0 we obtain also e.g. for

) a closed form

m=3, k=1, g¢'=¢ =const-(¢'¢?).
On the other hand, for
m=3, k=1, g¢'=¢ =const- (q‘+42)2
a closed form p # 0 exists, e.g. p = dg! A ¢! +dg? A !,
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4. CONCLUSION
The main purpose of this paper was to study trivial constraint variational problem.
As we have shown in Section 3, quite general solution of this problem appears not to
be elementary. Thus, every concrete choice of non-holonomic constraints has to be
studied separately with appropriately chosen approach.
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