Piotr Multarzyński; Wiesław Sasin Algebraic characterization of the dimension of differential spaces

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1990. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 22. pp. [193]–199.

Persistent URL: http://dml.cz/dmlcz/701782

Terms of use:

© Circolo Matematico di Palermo, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

ALGEBRAIC CHARACTERIZATION OF THE DIMENSION OF DIFFERENTIAL SPACES

Piotr Multarzyński, Wiesław Sasin

This work is a continuation of our previous investigations of the dimension problem for the tangent space to a differential space at a point [1]. Here we present a full characterization of the tangent space dimension basing on algebraic properties of the linear ring of all smooth functions on a differential space in the sense of Sikorski [7],[8].

1. PRELIMINARIES. Let M be any set and let C be any non-empty set of real functions on M. By \mathcal{T}_C we shall denote the weakest topology on M in which all functions from C are continuous. For any subset $A \subset M$, let C_A be the set of all real functions β on A such that, for any $p \in A$, there exist an open neighbourhood $U \in \mathcal{T}_C$ of p and a function $\alpha \in C$ such that $\beta \mid A \cap U = \alpha \mid A \cap U$. By scC we shall denote the family of all real functions on M of the form $\omega \cdot (\alpha_1, \ldots, \alpha_n)$, where $\omega \in \mathcal{E}_n$, $\alpha_1, \ldots, \alpha_n \in C$, $n \in \mathbb{N}$, and $\alpha_n \in C$.

A family C of real functions on M is called the <u>differential structure</u> (shortly a d-structure) on M if C = C_M = scC [8]. The pair (M,C) is said to be a <u>differential space</u> (shortly a d-space); the family C is then a linear ring [8] and its elements are called smooth functions on M. For an arbitrary set C_O of real functions on M, the set $(scC_O)_M$ is the smallest differential structure on M containing C_O . A differential structure C is said to be generated by C_O if $C = (scC_O)_M$.

This paper is in final form and no version of it will be submitted for publication elsewhere.

By a tangent vector to a d-space (M,C) at a point $p \in M$ we shall mean any linear mapping v: $C \longrightarrow \mathbb{R}$ which satisfies the condition

$$\nabla (\alpha \cdot \beta) = \nabla(\alpha) \cdot \beta(\beta) + \alpha(\beta) \cdot \nabla(\beta)$$

 $v\left(\alpha\cdot\beta\right)=v(\alpha)\cdot\beta\left(p\right)+\alpha\left(p\right)\cdot v(\beta)$ for α , $\beta\in C$. By T_{n}^{M} we shall denote the linear space of all tangent vectors to (M,C) at $p \in M$, called the tangent space to (M,C) at $p \in M$. The C-module of all derivations of the linear ring C will be denoted by $\mathfrak{X}(M)$. In the pointwise interpretation $\mathfrak{X}(\mathtt{M})$ is the C-module of all smooth vector fields tangent to (M,C) [7],[8]. A sequence $W_1, \ldots, W_n \in \mathcal{X}(M)$ is said to be a vector basis of the C-module $\mathfrak{X}(M)$ if for every point $p \in M$ the sequence $W_1(p), \ldots, W_n(p)$ is a basis of T_nM . We say that the differential space (M,C) is of constant differential dimension n if every point p \in M has a neighbourhood U \in Υ_{C} such that there is a vector basis of $\mathfrak{X}(\mathtt{U})$ composed of n vector fields.

2. MAIN RESULTS. Let (M,C) be a differential space. For any $p \, \epsilon^{M}$ we shall denote by $\, \sigma_{n}^{} \,$ the set of all smooth functions ff ϵ for which there exists an open neighbourhood ${\tt U}\,{\in}\, {\tt T}_{\underline{c}}$ of p and functions $f_1, \ldots, f_n \in C$, $\omega \in \mathcal{E}_n$, for some $n \in \mathbb{N}$, such that

 $f \mid U = \omega \cdot (f_1, \dots, f_n) \mid U$ $\omega'_{j}(f_{1}(p),...,f_{n}(p)) = 0$ for j = 1,...,n. It can easily be seen that α_n is a linear subspace of C.

Let $\mathrm{C}/\mathrm{ct}_\mathrm{D}$ be the quotient linear space and $[\mathrm{f}]_\mathrm{D}$ the equivalence class of fec.

LEMMA 1. Let (M,C) be a d-space, $p \in M$ an arbitrary point. Then $[\theta \cdot (\alpha_1, \dots, \alpha_n)]_p = \sum_{i=1}^n \theta'_{ii}(\alpha_1(p), \dots, \alpha_n(p))[\alpha_i]_p$

for any $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$, $\theta \in \xi_n$, $n \in \mathbb{N}$.

2°
$$[\alpha \cdot \beta]_p = \alpha(p) \cdot [\beta]_p + [\alpha]_p \cdot \beta(p)$$
 for any $\alpha, \beta \in \mathbb{C}$.

 3° If f,g \in C and f|U = g|U for a neighbourhood U \in $^{\circ}$ C of p, then $[f]_p = [g]_p$.

 4° If $k \in \mathbb{C}$ is a constant function then $[k]_n = 0$. Proof. 10 It is enough to show that

$$\theta \cdot (\alpha_1, \dots, \alpha_n) - \sum_{i=1}^n \theta'_{ii}(\alpha_1(p), \dots, \alpha_n(p)) \cdot \alpha_i \in \alpha_p.$$

Let $\omega \in \xi_n$ be a function given by the formula

$$\omega(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \theta(\mathbf{x}_1,\ldots,\mathbf{x}_n) - \sum_{i=1}^n \theta'_{ii}(\alpha_1(\mathbf{p}),\ldots,\alpha_n(\mathbf{p})) \cdot \mathbf{x}_i$$
 for $(\mathbf{x}_1,\ldots,\mathbf{x}_n) \in \mathbb{R}^n$. We see that

$$\omega \circ (\alpha_1, \dots, \alpha_n) = \theta(\alpha_1, \dots, \alpha_n) - \sum_{i=1}^n \theta'_{ii}(\alpha_1(p), \dots, \alpha_n(p)) \cdot \alpha_i$$

and

$$\omega'_{ii}(\alpha_1(p),...,\alpha_n(p)) = 0$$
 for $i = 1,...,n$.

Hence

$$\theta \cdot (\alpha_1, \dots, \alpha_n) - \sum_{i=1}^n \theta'_{i}(\alpha_1(p), \dots, \alpha_n(p)) \cdot \alpha_i \in \alpha_p.$$

2° follows from 1° if we take $\theta \in \mathcal{E}_2$, given by $\theta(x_1,x_2) = x_1 \cdot x_2$ for $(x_1,x_2) \in \mathbb{R}^2$. 3° and 4° are obvious.

Let $v \in T_p^M$ be any vector tangent to (M,C) at $p \in M$. Note that $v \mid \alpha_p = 0$. Hence v induces a linear functional $l_v \in (C/\alpha_p)$ defined by

(1)
$$l_v([f]_p) := v(f)$$
 for any $f \in C$.

<u>PROPOSITION 1</u>. The mapping I: $T_pM \longrightarrow (C/\alpha_p)^*$ defined by

(2)
$$I(v) := l_v \text{ for any } v \in T_D^M$$

is an isomorphism of linear spaces.

<u>Proof.</u> The linearity of the mapping I is clear. Obviously if $l_v = 0$ for some $v \in T_p^M$, then v = 0. Hence I is a monomorphism. Now we shall show that I is an epimorphism. For any $l \in (C/\sigma_p)^*$, let $v_1 \colon C \longrightarrow \mathbb{R}$ be the mapping defined by (3) $v_1(f) := l([f]_p)$ for $f \in C$.

It follows from condition 2° of Lemma 1 that v_1 is a tangent vector to (M,C) at p such that $I(v_1)=1$.

COROLLARY 1. Let (M,C) be a d-space and $p \in M$. Then for any $n \in N$, dim $T_pM = n$ if and only if dim $C/\alpha_p = n$. In particular dim $T_pM = 0$ iff $C = \alpha_p$.

COROLLARY 2. Let (M,C) be a d-space and $p \in M$. If $f \in C$ satisfies v(f) = 0 for each $v \in T_pM$, then $f \in \mathcal{O}_p$.

<u>Proof.</u> If v(f) = 0 for any $v \in T_pM$, then for an arbitrary

linear functional $1 \in (C/\alpha_n)^*$, $1([f]_n) = v_1(f) = 0$. Hence we get $[f]_{p} = 0$ or equivalently $f \in \alpha_{p}$.

DEFINITION 1. A set $\mathcal{F} \subset \mathcal{C}$ is said to be a local basis (1-basis for short) of the differential structure C on M at $p \in M$ if any function $f \in C$ can be uniquely expressed in the form

$$f = \lambda^1 \cdot f_1 + \dots + \lambda^n \cdot f_n + g$$

where $f_1, \ldots, f_n \in \mathcal{F}$, $\lambda^1, \ldots, \lambda^n \in \mathbb{R} \setminus \{0\}$, $g \in \sigma_n$.

PROPOSITION 2. Let (M,C) be a d-space with the differential structure C generated by a set C_0 . Then, for any $p \in M$, there exists an 1-basis \mathcal{F} of C at p such that $\mathcal{F} \in \mathbb{C}_{0}$.

<u>Proof.</u> Consider the quotient space C/α_n . It can easily be seen that the set $\{[f]_p: f \in C_0\}$ generates the linear space C/α_p . Let $B := \{[f_s]_p : f_s \in C_o, s \in S\}$, where S is a set of indices, be a basis of C/α_{D} . Then the set $\mathcal{F}:=\{\mathbf{f_s}\colon \mathbf{s}\in S\}$ is clearly an 1-basis of the differential structure C at p. LEMMA 2. Let (M,C) be a d-space with C generated by C. Then, for any $p \in M$, in the definition of α_p we can take f_i to belong to C (see the beginning of this section).

The proof of this lemma is obvious.

LEMMA 3. The set σ_n is a differential structure on M such that $\tau_{\alpha_{\bullet}} = \tau_{c}$.

<u>Proof.</u> Let $f_1, \ldots, f_n \in \mathcal{O}_p$. We shall show that $\omega \cdot (f_1, \dots, f_n) \in \alpha_p$. Indeed, from condition 10 of Lemma 1 it follows that

$$\left[\omega \cdot (\mathbf{f}_1, \dots, \mathbf{f}_n)\right]_p = \sum_{i=1}^n \omega'_{i}(\mathbf{f}_1(\mathbf{p}), \dots, \mathbf{f}_n(\mathbf{p})) \cdot \left[\mathbf{f}_i\right]_p = 0,$$

or equivalently $\omega \cdot (\mathbf{f_1}, \dots, \mathbf{f_n}) \in \alpha_{\mathbf{p}}$.

In order to show that $\mathcal{T}_{\alpha_p} = \mathcal{T}_{\mathbb{C}}$ observe that $A := \left\{ (\mathbf{f} - \mathbf{f}(\mathbf{p}))^3 \colon \mathbf{f} \in \mathbb{C} \right\} \subset \alpha_p \subset \mathbb{C}$. It is trivial that $\mathcal{T}_A = \mathcal{T}_{\mathbb{C}}$. Since $A \subset \alpha_p \subset \mathbb{C}$ implies

 $\tau_{\Lambda} \subset \tau_{\alpha}$, $C \tau_{C}$, we see that $\tau_{\alpha} = \tau_{C}$.

LEMMA 4. Let (M,C) be a d-dpace and let F be an 1-basis of the d-structure C at pem. For any function $u_0: \mathcal{F} \longrightarrow \mathbb{R}$ there exists exactly one tangent vector u: $C \longrightarrow \mathbb{R}$ at p such that u17 = u0.

<u>Proof.</u> Let u: $C \longrightarrow \mathbb{R}$ be a mapping given by the formula $u(f) = \sum_{i=1}^{n} \lambda^{i} \cdot u_{o}(f_{i})$ for $f \in C$, (5)

where $f_1, \ldots, f_n \in \mathcal{F}$, $\lambda^1, \ldots, \lambda^n \in \mathbb{R}$ are elements such that $f = \sum_{i=1}^{n} \lambda^{i} \cdot f_{i} + g$, where $g \in \sigma_{p}$. It can easily be noticed that u is a linear mapping and $u \mid \sigma_n = 0$, hence $u \in T_nM$, and $u \mid \mathcal{F} = u_0$. The uniqueness of u is clear.

LEMMA 5.All 1-bases of a differential structure C at p ϵ M are of the same cardinality. If C generates C then, for any 1-basis \mathcal{F} of C at $p \in M$, Card $\mathcal{F} \leq C$ ard C₀.

Proof. Let F₁ and F₂ be two 1-basis of C at p. Then the sets $[\mathcal{F}_1]_p := \{[f]_p : f \in \mathcal{F}_1\}$ and $[\mathcal{F}_2]_p := \{[f]_p : f \in \mathcal{F}_2\}$ are bases of the linear space \mathbb{C}/α_p , and $\mathbb{C}\mathrm{ard}\,\mathcal{F}_i=\mathbb{C}\mathrm{ard}\,[\mathcal{F}_i]_p$ for i = 1,2. Obviously, $\mathbb{C}\mathrm{ard}\,[\mathcal{F}_1]_p=\mathbb{C}\mathrm{ard}\,[\mathcal{F}_2]_p$. Hence $\mathbb{C}\mathrm{ard}\,\mathcal{F}_1=\mathbb{C}\mathrm{ard}\,\mathcal{F}_2$. The second assertion follows from the first and Proposition 2.

PROPOSITION 3. Let (M,C) be a d-space and let $\mathcal{F} \subset C$ be an 1-basis of C at $p \in M$. Then the mapping $\Phi: T_pM \longrightarrow \mathbb{R}$ ρΔ

(6)
$$\Phi(u) := u \mid \mathcal{F} \quad \text{for } u \in T_pM$$

is an isomorphism of linear spaces.

Proof. This follows immediately from Lemma 4. COROLLARY 3. Let (M,C) be a d-space and let F be an 1-basis of C at $p \in M$. Then

(a)
$$Card \mathcal{F} < \infty \implies Card \mathcal{F} = \dim T_p M$$

(b) $Card \mathcal{F} = \infty \implies 2^{Card \mathcal{F}} = \dim T_p M$

(b) Card
$$\mathcal{F} = \infty$$
 \Longrightarrow 2 dim T_pM .

POSITION 4. A d-space (M.C) is of constant different

PROPOSITION 4. A d-space (M,C) is of constant differential dimension n if and only if, for any $p \in M$, there exist a neighbourhood $U \in T_C$ of p and a subset $\{f_1, \ldots, f_n\} \subset C$ which forms an 1-basis of C at any point of U.

Proof. " \Longrightarrow " Assume that (M,C) is of constant dimension n. Then for any point p there exist an open neighbourhood $v \in {}^{\gamma}c$ of p and a vector basis $\{W_1, \ldots, W_n\} \subset \mathfrak{X}(V)$ of the C-module $\mathfrak{X}(V)$ [7],[8]. It can easily be seen [8] that there exist an open subset $U \subseteq V$ containing p and functions $f_1, \dots, f_n \in C$ such that

 $(7) \qquad \text{$W_i(q)(f_j) = \delta_{ij}$ for $q \in U$, $i,j = 1,\ldots,n$.} \\ \text{We shall show that the set $$\{f_1,\ldots,f_n\}$ is an 1-basis at any $$q \in U$. Since $$\{W_1(q),\ldots,W_n(q)\}$ is a basis of the linear space $$T_qM$, $$I($\{W_1(q),\ldots,W_n(q)\}$)$ is a basis of the linear space $$(C/\alpha_q)^*$, where I is the isomorphism given by (2). From (1) and (7) we obtain $I(W_i(q)) = [f_i]_q^*$ for $q \in U$, $i = 1,\ldots,n$. \\ \text{Hence $$$}\{[f_1]_q,\ldots,[f_n]_q^*\}$ is a basis of the linear space $$C/\alpha_q$ for $q \in U$. Let $f \in C$. Then, for $q \in U$, the element $$[f]_q$ has a unique decomposition $$[f]_q = \lambda^1 \cdot [f_1]_q + \ldots + \lambda^n \cdot [f_n]_q$, where $\lambda^1,\ldots,\lambda^n \in \mathbb{R} \setminus \{0\}$ or equivalently $f = \lambda^1 \cdot f_1 + \ldots + \lambda^n \cdot f_n$ + g, where $g \in \alpha_q$. Thus the set $$\{f_1,\ldots,f_n\}$ is an 1-basis of the d-structure C at any point of U.}$

"\(\equiv \) Let $p \in M$ and let $U \in \mathcal{T}_C$ be a neighbourhood of p such that the set $\{f_1, \ldots, f_n\} \subset C$ is an 1-basis of C at all $q \in U$. Let W_i , for $i = 1, \ldots, n$, be a vector field on U satisfying the condition $W_i(q)(f_j) = \delta_{ij}$ for $q \in U$, $j = 1, \ldots, n$. The uniqueness of the fields W_1, \ldots, W_n follows from Lemma 4. We shall show that the vector fields W_1, \ldots, W_n are smooth. Each function $f \in C$ has a unique decomposition in the form

 $f = \lambda^1 \cdot f_1 + \dots + \lambda^n \cdot f_n + g,$ where $\lambda^1, \dots, \lambda^n \in \mathbb{R} \setminus \{0\}$ and $g \in \sigma_p$. One can easily see that $W_1(f|U) = \lambda^1$, for $i = 1, \dots, n$. This demonstrates the smoothness of the vector fields W_1, \dots, W_n . It can easily be seen that $\left\{W_1(q), \dots, W_n(q)\right\}$ is a basis of the linear space T_qM , for $q \in U$. Thus the d-space (M,C) is of constant differential dimension n. EXAMPLE. Let C be the d-structure on R generated by the set of real functions $C_0 := \left\{f_n \colon n \in \mathbb{N}\right\}$, where $f_n(x) := x^{1/(2n-1)}$. Then $\sigma_0 = C$ and dim $T_xR = 1$ for $x \in \mathbb{R} \setminus \{0\}$, dim $T_xM = 0$ for x = 0.

REFERENCES

- 1. MULTARZYNSKI P. and SASIN W. "On the dimension of differential spaces", Dem. Math. (to appear).
- 2. SASIN W. "On some exterior algebra of differential forms over a differential space", Dem. Math. 19 (1986), 1063-1075.

- 3. SASIN W. and ZEKANOWSKI Z. "On locally finitely generated differential spaces", Dem. Math. 20 (1987), 477-487.
- 4. SASIN W. "On equivalence relations on a differential space", CMUC 29, 3 (1988), 529-539.
- 5. SASIN W. "On locally countably generated differential spaces", Dem. Math. 21 (1988), 895-912.
- 6. SIKORSKI R. "Abstract covariant derivative". Coll. Math. 18 (1967). 251-272.
- 7. SIKORSKI R. "Differential modules", Coll. Math. 24 (1971). 45-79.
- 8. SIKORSKI R. "Introduction to differential geometry" Polish Warszawa 1972.
- 9. WALCZAK P. G. "A theorem on diffeomophism in the category of differential spaces", Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 21 (1973), 325-329.
- 10. WALISZEWSKI W. "Regular and coregular mappings of differential spaces", Ann. Polon. Math. 30 (1975), 263-281.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW, PL. JEDNOSCI ROBOTNICZEJ 1, 00-661 WARSZAWA, POLAND.