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CONNECTED SPACES WHICH ARE NOT STRONGLY CONNEETED )

Cosimo Guido

Sunto. In questa nota vengono individuate due classi di spazi to-
vologdicd, nispettivamente T0 nan-T1 e T1 non-Tz, che s0no connessd
ma non fortemente connessi.

INTRODUCTION. We recall that a topological space (S,t) is maximal
connected if it is connected and no connected topology t' on S exi-

sts which is strictly finer that 1, (S,t) is strongly connected if
T is coarser than a maximal connected topology t' on S.

The existence of maximal connected spaces verifying some separa-
tion axioms has been often investigated; until uow it'is an open que

stion whether a regular maximal connected space exists or not.
Any-way every maximal connected space is a T0 space.

We remark that each connected topology on a finite set is stron-
gly connected.

Now if we consider only T, topological spaces with infinitely many
points, the following questions can be asked.

Do there exist To non-T, strongly connected spaces which have,re

1

spectively, maximal connected T2 or maximal connected T1 or only ma-

ximal connected T, expansions?
Do there exist T non-T, strongly connected spaces whichhave,respe
ctively,maximal connected T2 or only maximal-connected T1expansions?

~ Do there exist connected non-strongly connected spaces which are
respectively TZ’T1 non-Tz, T0 non-T1? v

The answers to the first two questions are affirmative by the
well-known existence of To non-T1,L'T1 non-Tz, and T2 maximal conne-

cted spaces.
In some papers, listed below, sufficiently large classes of spa-
ces were pointed out in ordér to give examples of such spaces.

(*) Subject classification AMS 1980 54A10 54005 54D10.
Pértially supported by a grant of M.P.I.
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Guthrie and Stone [5] and Baggs [1] found T2 connected..spaces

which are not strongly connected.

In this note we show how to construct T1 non-‘l'2 ot.T0 non-—T1 con-
nected topological spaces wich are not strongly connected.

If (S,t) is a topological space, we shall denote by t(x) the fa-
mily of open neighbourhoods of x while J(x) will denote the nei-

ghbourhood filter of x in T.TlX will be the induced topology on the

subset X ¢ S. If X,Y are subsets of S, X\Y will denote their diffe-
rence, If, finally, X is a disconnected subspace of (S,t), we shall

say that A, B divide X in t if A, B are non-empty open sets of Tlx

and AUB =X, ANB = ¢

See [3] for further notations not mentioned here.

1. Let (N,1,) be a T, connected space with a dispersion point
X, € N, Choose a point x # X, in N and a non-principal open ultra-
filter vy on N containing the family {V™ {x} / V e 1,(x)}.

Consider the topology T on N defined by

x ¢ A =>A¢€ 1,
Ac N, Aet<=>
xe A=>AN{x} euvN 1,

Trivially (N,t) is Hausdorff and x, is a dispersion point of (N,d
too. Furthermore we have the following.

LEMMA 1. U c N, U U {x} =>(N\U) U {x} e J(x).

Proof. Let U be & subset of N. If U € v, then Ae vNT,, Ac U
exists. A U {x} is open in 1 and U u {x} e JZ (x).

IfU¢ v, then Bevn t1,, Bc (N\U) exists hence B u {x} e 1
and (N\U) u {x} e jq(x).

LEMMA 2. (N,t) 48 connected.

Proog. If (N,7) were disconnected and A,B divided S in T and xeA,
then we should have

Ber, and AN{x} evuvnNn 1,

hence B and AN {x} would divide NN {x} in t, and consequently -x
would be a cut point of (N, t,),

So we have the assertion since the dispersion point x, 1is the
only cut point of (N,t,)

Now consider a point y ¢ N and put S = N U {y}. Let ¢ be the to-
‘pology on S defined by

y¢A=>Aert

Ac S, aegc<=> y e A =>AN{y}l e 1,Nn v
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0f course cl =T and (S,0) is a T1 non-T2 space.
N

Furthermore (S,o0) is connected; indeed if A,B divided S in o
and y € A,then A\{y} and B would divide N in 7,.

Eventually it can be proved the following lemma.

LEMMA 3. N nemains connected in every connected expansion of (S,0)

Proof. Let (S, 1), 1' oo, be a connected expansion of (S,0).

If N were disconnected and X, Y divided N in T', where X=ANN,
Y = BON with A,B e t', we should have y ¢ A U B whence A,B\ {y}
or A,B divide S in 1' which contradicts the assumptions.

Then let us consider the case y ¢ A U B and consequently assufe
X=AeT1', Y=Be 1'; by lemma 1 we could suppose X U {x} e 7. (x)
and then X U {y} would be open in o ¢ t'. X U {y} and Y would di-

vide S in t' and, again, (S,t') would be discomnnected.

The following theorem can now be easily proved.

THEOREM 1. (S,0) 44 not a strongly connected space.

Proof§. Otherwise, the connected subspace N‘of some maximal conne-
cted expansion (S,t') would be maximal connected and (N,t,) would be
strongly connected which is absurd (see [5] theorem 15).

2. Let (M,T1) be a T1 maximal connected topological space such
that the non-empty open sets form an ultrafilter v = 11\\{¢}.

Take two points xeM and y ¢ M, put X =M U{y} and consi-
der the topology t on X defined by

AN{ Yy} et and
AcX, Ae 1<==>

y e A =>x¢€ A.

X,t) is a T, non-T, connected space and it is not maximar
nected (in fact its proper expansion A e ' <>AN{yl € v or A=
i’'s connected).

Furthermore the following results hold for such a topology.

LEMMA 4. 1§ ' o1 44 a maximal connected nan-T1 topology on X,
then M is connected in T'.

Proof. Let M be disconnected and ANM, BOM divide M;»,B e T';
suppose x e A, then x ¢ B and y ¢ B since 1t'(y) c ' (x). '

If now y e A, then A,B divide X in rt°'.

If y¢ A and A e T, we must have AU {y} er c 1' whence
A U {y}, B divide X in <'; in the same way A, B U {y} divide X
in ' if y ¢ A and B e Ty

Anyway (X,t') must be disconnected, a contradiction.
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LEMMA 5. 1§ T'o T is a maximal connected topofogy onX and M

is connected in T', then T' is a'T1 topoklogy.

Prood. It follows from the assumption that (M,t', ) is maximal

IM

connected since it is a connected subspace of a maximal connected

space; on the other hand T1=T‘ c~ﬂl is a maximal connected topology
M~ IM

too, so we have ! =T
Im
Consider now U e T~ T ; trivially UNM = U\ {y} € T4 and y € U:
furthermore it follows from U~ {y} e Tp Y e U and U ¢ 1 that
x ¢ U. U is actually a neighbourhood of y, in %',"whi¢l does not

contain x and consequently T' is a T1 topology.

Let now g ot be a To non-T, connected topology on X which is

T,-disconnected, i.e. the least }1 topology containing o is discon-
nected (see [3]).

We are now able to prove the concluding result.

THEOREM 2. (X,0) 4is not strongly connected.

Proof. If ' oy were a maximal connected expansion of ¢ one
would have 1' 5 0 5 1; on the other hand 1t' would not be T,, hen-

ce 1! would be connected, by lemma 4, which contradicts the assum

ption that Tt' is maximal connected, by lemma 5.
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