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CONNECTED SPACES WHICH ARE NOT STRONGLY CONNECTED ^ 

Cosimo Guido 

Sunto. In queAta nota vengono Individuate due clahbl dl &pazl to-

oglcl, Klbpettlvamente T 

ma non ^oKtemente connc6&l. 

vologlcl, Klbpettlvamente T non-T e T non-T , che &ono connc&Al 

INTRODUCTION. We recall that a topological space (S,T) is maximal 
connected if it is connected and no connected topology T' on S exi­

sts which is strictly finer that T, (S,T) is btKongly connected if 

T is coarser than a maximal connected topology TT on S. 

The existence of maximal connected spaces verifying some separa­

tion axioms has been often investigated; until now it is an open qu£ 

stion whether a regular maximal connected space exists or not. 
Any-way every maximal connected space is a T space. 

We remark that each connected topology on a finite set is stron­
gly connected. 

Now if we consider only TQ topological spaces with infinitely many 
points, the following questions can be asked. 

Do there exist T non-T.. strongly connected spaces which have,re 

spectively, maximal connected T? or maximal connected T or only ma­

ximal connected TQ expansions? 

Do there exist T1 non-'L strongly connected spaces which have ,respe 
ctively,maximal connected T2 or only maximal-connected T expansions? 

Do there exist connected non-strongly connected spaces which are 
respectively T ,T non-T , T non-T ? 

The answers to the first two questions are affirmative by the 

well-known existence of T non-T. ,'..T.. non-T2, and T2 maximal conne­

cted spaces. 

In some papers, listed below, sufficiently large classes of spa­
ces were pointed out in order to give examples of such spaces. 

(*) Subject classification AMS 1980 54A10 54D05 54D10. 
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Guthrie and Stone [5] and Baggs [1] found T connected.spaces 

which are not strongly connected. 
In this note we show how to construct T„ non-T0 ot.T non-T„ con-

1 L o 1 

nected topological spaces wich are not strongly connected. 
If (S,T) is a topological space, we shall denote by T(X) the fa­

mily of open neighbourhoods of x while ^"(x) will denote the nei-
"-̂  T 

ghbourhood filter of x in T.T, Y will be the induced topology on the 

subset X c S. If X̂ ,Y are subsets of S, X^Y will denote their diffe­

rence. If, finally, X is a disconnected subspace of ( S , T ) , we shall 

say that A, B divide X in T if A, B are non-empty open sets of T I Y 

and A U B = X, A O B = 0 

See [3] for further notations not mentioned here. 

1. Let (N,T0) be a T2 connected space with a dispersion point 
x0 e N. Choose a point x 7- x0 in N and a non-principal open ultra-
filter u on N containing the family {V^ {x} / V e T0(X)}. 

Consider the topology T on N defined by 
x i A => A e T 0 

A c N , A e T < = > 
x e A => A \ {x} e u n T 0 

Trivially (N,T) is Hausdorff and x0 is a dispersion point of (N,T) 
too. Furthermore we have the following. 

LEMMA 1 . U c N, U U {x} => (N \U) U {x} e /^(x). 

P-iooA. Let U be at subset of N. If U e u, then Ae U O T 0 , A C U 

exists. A U {x} is open in T and U u {x} e :^~(x). 
If U t u , then B eu n T 0, B e (N \ U) exists hence B u {x} e T 

and (N \ U) u {x} e :T(x). 
T 

LEMMA 2. (N,T) A.6 connected. 
?Kooi. If (N,T) were disconnected and A,B divided S in T and xeA, 

then we should have 
B e x0 and A\(x} e ufi T0 

hence B and A\{x} would divide N^{x} in T 0 and consequently x 
would be a cut point of (N, T 0 ) . 

So we have the assertion since the dispersion point x0 is the 

only cut point of (N,T0) 

Now consider a point y i N and put S = N U {y}. Let a be the to­

pology on S defined by 
y i A -=> A e T 

A G S, a ec <«> y e A =rs> A v {y} e To n u 
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Of course a. = T and (S,a) is a T1 non-T9 space. 

'N ] L 

Furthermore (S,a) is connected; indeed if A,B divided S in a 

and y e A,then A\{y} and B would divide N in T0. 

Eventually it can be proved the following lemma. 

LEMMA 3. N nemainb connected in even.y connected expansion ofa (S,a) 

Psiooi. Let (S, T! ), Tf z) a, be a connected expansion of (S,a). 

If N were disconnected and X, Y divided N in f , where X=A nN, 

Y = B n N with A,B e T f, we should have y e A U B whence A,B\ { y} 

or A,B divide S in Tf which contradicts the assumptions. 

Then let us consider the case y f* A u B and consequently assuliie 

X = A e T f , Y = B e T!; by lemma 1 we could suppose X U {x} e «C(x) 

and then X U {y} would be open in a c Tf. X U {y} and Y would di­

vide S in T f and, again, (S,Tf) would be disconnected. 

The following theorem can now be easily proved. 

THEOREM 1. (S,a) 16 not a btnongly connected ..space. 
P/LOO^. Otherwise, the connected subspace N of some maximal conne­

cted expansion (S,T ! ) would be maximal connected and (N,T 0) would be 

strongly connected which is absurd (see [5] theorem 15). 

2. Let (M,T ) be a T maximal connected topological space such 

that the non-empty open sets form an ultrafilter u = T \{0}. 

Take two points x e M and y 4 M, put X = M u { y} and consi­

der the topology x on X defined by 

A \{ y} ex- and 
A £ X, A e T<=-»> 

y e A -=-=> x e A. 

(X,T) is a T non-T1 connected space and it is not maximal: 

nected (in fact its proper expansion A e T
f <=»A\{y} e u or A=0 

xs connected). 

Furthermore the following results hold for such a topology. 

LEMMA 4. 1(5 T! -3 T i& a maximal connected non-1* topology on X, 
then M -C6 connected In Tf. 

VKooi. Let M be disconnected and AHM, B n M divide M;/N,B e T1; 

suppose x e A, then x 4 B and y 4 B since Tf(y) c Tf(x). 

If now y e A, then A,B divide X in T f. 

If y 4 A and A e T1 we must have A U {y} ex £ T' whence 

A U {y}f B divide X in T!; in the same way A, B U ly} divide X 

in T ! if y t A and B e T . 

Anptfay (XtT
f) must be disconnected, a contradiction. 



152 COSMO GUIDO 

LEMMA 5. If$ T'Z>T >c4 a maximal connected topology onX and M 
i* connected in T ! , then T1 i& aT-j topology. 

Vfiooi. I t follows from the assumption that (M,^, ) i s maximal 
I'M 

connected since it is a connected subspace of a maximal connected 
space; on the other hand T1SSTI C T\ is a maximal connected topology 

1 'M- IN 

too, so we have T ! = T 1. 
IM 

Consider now U e T'N T ; trivially U O M = U\ {y} e Ti
 an<l y e U: 

furthermore it follows from U\ {y} e T , y e U and U t T that 
x 4 U. U is actually a neighbourhood of y, in t!,*whicr does not 

contain x and consequently T! is a T topology. 

Let now a ̂  T be a T non-T connected topology on X which is 

T -disconnected, i.e. the least T.. topology containing a is discon­
nected (see [3]). 

We are now able to prove the concluding result. 

THEOREM 2. (X,a) it> not btAongly connected. 
VKooh* If T

f ^a were a maximal connected expansion of a one 
would have T 1 -O O* ;-> T ; on the other hand T ! would not be T , hen­
ce T ! would be connected, by lemma 4, which contradicts the assum 

|M 

ption that T ! is maximal connected, by lemma 5. 
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