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COISOTROPIC BUNDLES AND.INDUCED REPRESENTATIONS 

Wojciech Lisiecki 

0. Introduction 

This paper deal9 with some problems from symplectic geometry 

connected with a symplectic analogue of the induction procedure. 

A procedure of "symplectic induction" was introduced by Weinstein 

[We2] in connection with a gauge-invariant description of phase 

spaces of classical particles in Yang-Mills fields and was further 

developed by Guillemin and Sternberg [GS2] . According to geometric 

quantization (see e.g. [B], [GS1] , [Ki], [Ko] , [We1j ), a symplectic 

model of a unitary representation of a Lie group G is a Hamilto-

nian G-space. Given a Lie subgroup H of G, Weinstein* s procedure 

associates to each Hamiltonian H-space a Hamiltonian G-space which 

is a symplectic model of the representation of G induced by the 

representation of H corresponding to the Hamiltonian H-space. The 

"induced" Hamiltonian G-space has an additional structure of a 

coisotropic bundle over G/H. Basic facts concerning coisotropic 

bundles and Weinstein*s procedure are briefly summarized in sec­

tions 1 and 2. These sections contain also some results on classi­

fication of Lagrangian bundles,which are special cases of coiso­

tropic bundles. 

Principal results of this paper concerning symplectic induction 

in the case of semisimple Lie groups are contained in the next two 

sections. The main technical device is the use of complex symplec­

tic geometry, which allows us to replace (real) coisotropic bundles 

by (complex) Lagrangian bundles. In section 3 we study some geome­

trical properties of holomorphic Lagrangian bundles over complex 

flag manifolds. Results of this section are applied in. section 4 

to the study of some class of coisotropic bundles over real flag 

manifolds of a real semisimple Lie group G which correspond to the 

representations of G induced by finite dimensional representations 

of parabolic subgroups of G. In particular, we establish a rela-
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tionship between the bundles of this class and coadjoint orbits of 

Gr thus extending some results of [GS2]. 

This paper is a considerablv extended versi^_. of my talk during 

the Conference. This talk deal-J with holomorphic Lagj.angian bundles 

only, which constitute-, approximately, the material of section 3. 

Since then a detailed exposition of the results of this section has 

been prepared (see [L]). The entirely new section 4 is a prelimina­

ry version of a publication which is now in preparation. 

1. Coi3otropic bundle3 

In thi3 section M is a fixed real or complex manifold. All liber 

bundles to be considered have M as a base space (in the complex 

case they are assumed to be holomorphic). For the basic notions of 

symplectic geometry used here the reader is referred to [.AM], [GS1], 

EWelJ and [Wo] (all these references deal with real symplectic 

geometry; transition to the complex case is obvious). 

(1.1) A coisotropic bundle is a quadruple 

A = (E,ft, M , w ) , 

where it : E —> M is a fiber bundle and e*. is a symplectic form 

on E such that each fiber E m is a coisotropic submanifold of 

(E, GO ). A morphism of coisotropic bundles is a fiber preserving 

symplectomorphism; an M-morphism is one which induces the- identity 

on M. E carries a natural isotropic foliation whose restriction to 

•each E m coincides with the kernel foliation of coL . We shall 

assume that this foliation is a fibration S • E —> N. Thus E has 

two compatible structuree of a fiber bundle, that ie, we have a 

commutative diagram 

(i.i.D » I \ 
N >M. 

<f 

Moreover, the fibers of d are symplectic manifolds. 

In the special case where the fibers of ^ are Lagrangian sub-

manifolds we obtain the notion of a Lagrangian bundle. In this 

case 5 coincides with ** . 

(1.2) Polarizatione ( [B], [GS1] , [Wei] , [Wo] ). A polarization 

of a real symplectic manifold (X, to) is a complex involutive La­

grangian subbundle F of **• nnmplexified tangent bundle TX «> <D. 
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If F = F (where bar denotes the complex conjugation in TX$<D), 

F is called a real polarization. Thus real polarizations are in a 

one-one correspondence with Lagrangian foliations of X. In particu­

lar, any structure of a Lagrangian bundle on X determines a real 

polarization of X. 

At the other extreme are Rahler polarizations which are charac­

terized by FOF = ioi. They are in one-one correspondence with com­

plex structures on X with respect to which co has type (1, 1). 

A polarization F is strongly admissible if FnTX and (F + F) r\ TX 

are involutive subbundles of TX and the corresponding foliations 

are fibrations. Such polarizations are in one-one correspondence 

with structures of coisotropic bundle on X such that, for each 

m-M, 6" (m) (see (1.1.1)) carries a Kahler polarization which 

depends smoothly on m. 
«i .ft 

In some cases we can find a complexification (X , co ) of (X, co ) 

such that a polarization F of (X, co) induces a structure of holo-

morphic Lagrangian bundle on (XC, coc). On the other hand, if (X, co ) 

is a real form of a complex symplectic manifold (X^, co^), each 

structure of holomorphic Lagrangian bundle on (Xc, coc) determines 

a polarization of (X,co). 

(1.3) The isotropic fibers of a coisotropic bundle A carry an 

additional structure. Namely, the M-morphism of bundles 

(1.3.D T*M* kB->TB - (p,e)f-> %*(e) -= ((Te It? (p) ) * 

where sharp denotes the isomorphism T*E —> TE induced by co , is an 

infinitesimal action of T*M (viewed as a bundle of Abelian Lie 

algebras) on E, that is, for each m€M and all p,p' 6 T*Ivi, the 

vector fields |P and &P , defined on 3^, commute. Moreover, 

(1.3.1) is a vector bundle isomorphism onto the subbundle Ler Ts 

(i.e. the action is free). Thus the isotropio fibers of A are 

parallelizable affine manifolds. 

tfe say that a coisotropic bundle A is an affine coisotropic 

bundle (AC bundle) if the infinitesimal action O o . l ) is induced 

by a (necessarily unique) action 

T*M X ME —> E 

of T*M (now viewed as a bundle of Abelian Lie groups) on E. (This 

is so iff all isotropic fibers of A are simply connected and all 

vector fields £P are complete.) Thus the isotropic bundle £ :-E —>N 

of an AC bundle is an affine bundle; the corresponding vector 

bundle is 4*T*M. 

The remainder of this section is devoted to the classification 



204 WOJCIECH LISISCKI 

of holomorphic affine Lagrangian bundles (AL bundles) over a fixed 

complex manifold M (in the real case the clas9ification is well 

known; cf. [vVo], Prop. 4.4.2 and the Remarks that follow it). 

(1.4) The simplest AL bundle is the cotangent bundle 

*J = (T*M, « K. M, »M) 
with its canonical 9ymplectic form. The underlying affine bundle i3 

T M it9elf. It turns out that any AL bundle is locally isomorphic 

to ^ M. More precisely, we have the following. 

(1.5) Proposition. Let A be an AL bundle over M. For each meM, 

there is an open neighborhood U 3 m in M together with a U-isomor-

phiSm f-j : |̂ TJ —> ^TJ-

See [L], (1.9) for a simple proof. 

(1.6) The above proposition allows us to clas3ify holomorphic 

AL bundles over M. In fact, it follows from the theory of fiber 

bundles (see e.g. [Gj , Prop. 5.1.1) that the M-isomorphism clas3es 

of fiber bundles over M which are locally isomorphic to a given 

model bundle are in one-one correspondence with the elements of 

the first cohomology space of M with values in the sheaf of germs 

of M-automorphisms of the model bundle. In the case of f?J, this 

sheaf is isomorphic to %\ the sheaf of germs of closed holomor­

phic 1-forms on M; the isomorphism is obtained by as3igning to 

each c* € J^1(U), U open in M, the U-automorphism p I—> p + oCm, 

m = *t.,-(p). Thus we obtain the following. 

(1.7) Proposition. There is a natural bisection between the 

set of M-isomorphism classes of holomorphic AL bundles over M and 

H1(I.i, % 1 ) . 

2. Hamiltonian coisotropic bundles and symplectic induction 

In this section G and H .denote real or complex Lie groups and 

fcj, and >ty their Lie algebras. 

(2.1) A Hamiltonian G-space (X,co,J) consists of a symplectic 

space (X, co), an action of G on (X, co) by symplectomorphisms and 

a G-equivariant map J : X —> cj* such that 
i(gx)co = dJ*( *) V % e c ^ , 
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where 8 I—> SJX is the infinitesimal action of c* on X and J* is a 

map from ^ to analytic functions on X defined by 

(J*(« ))(x) =<J(x),6> V fee V V x € X. 

J is called a momentum mapping for the action of G. 

A morphism «f : (X, GO , J) —» (X, co', j') of Hamiltonian G-spaces 

is a G—equivariant symplectbmorphism satisfying 

j'* cp = J. 

Each coadjoint orbit of G in ty* has a natural structure of a 

homogeneous Hamiltonian G-space. If (X, w , J) is a homogeneous 

Hamiltonian Gr-space, J : X —> J(X) is a morphism and a covering. 

Hamiltonian G-spaces are symplectic analogues of unitary repre­

sentations of 0; the homogeneous ones are counterparts of irreduc­

ible representations. See [B], [Ki], [Ko] for details. 

(2.2) An (affine) Hamiltonian coisotropic G-bundle ((A)H0 G-

-bundle) over a G-space N is a pair (A ,J), where A = (E,tfC,M, co) 

is an (affine) coisotropic bundle on which G'acts by automorphisms 

in such a way that the total space 3 is a Hamiltonian G-space, and 

J is the momentum mapping for this action. A morphism of (A)HC G-

-bundles is a map which is both a morphism of the underlying (af­

fine) coisotropic bundles and a morphism of the underlying Hamil­

tonian G-spaces. We write [( A , J)] for the M-isomorphism class of 

(A.J). 

There is a natural relationship between HG G-bundles and u-

-invariant polarizations of Hamiltonian G-spaces which is a G-

-equivariant counterpart of the relationship between coisotropic 

bundles and polarizations described at the end of (1.2). 

(2.3) Marsden-'iVeinstein reduction. This is a general method of 

producing new symplectic spaces from a given Hamiltonian space. Ne 

shall use it below to construct AHC G-bundles over a G-homogeneous 

base. Let (X, w , J) be a Hamiltonian H-space. Fix a regular value 

fe ^y of J and let Hf denote the stabilizer of f. Then J"
1(f) is 

a Hf-invariant submanifold of X so the orbit space 

Xf = J~
1(f)/Hf 

is well defined. Assume that Xf has a structure of manifold such 

that the natural projection ^f : J~1(f) —> Xf is a submersion 

(this assumption is satisfied, for instance, if the action of Hf 

on J""1(f) is free and proper). Then a theorem of Marsden and Wein-

stein ([AM], 4.3.1) asserts that there is a symplectic form c*if on 

X f which is uniquely determined by 
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•o* w f - i * « , 

where if : J"'(f) — > X denotes the inclusion. The symplectic space 

(Xf, cof) is called the O'.arsden-.Veinstein) reduction of X at f. 

There is an alternative description of Xf which is sometimes 

more useful. Let Of be the H-orbit through f and let 0 f = 

= i- f I f € O f \ . Then X f is symplectically isomorphic to the reduc­

tion of the product Hamiltonian H-space X * Of at zero. .Yhen viewed 

this way, Xf is usually denoted by X<jf and called the (Marsden-

-,/einstein) reduction of X with respect to Of. More generally, we 

may define the reduction Xy; of X with respect to an arbitrary Ha­

miltonian H-space Y replacing Of by Y in the above construction. 

(2.4) Reduction of a cotangent bundle to a Lie group. T*G has 

two natural structures of left and right affine Hamiltonian La-

grangian (AHL) G-bundle, the corresponding actions of G being co­

tangent to the actions of G on itself by left and right transla­

tions, respectively. If H is a Lie subgroup of G, we may view T G 

as a right Hamiltonian H-space. Change the right action of H into 

a left one letting each heii act on G as the right translation by 

h*"1. ^or each Hamiltonian H-space f, the assumptions of the Lars-

den-//einstein theorem are fulfilled so we may form the reduced 

space (T*G)jr. Since the actions of G and H on T*G commute and the 

momentum mapping for the action of G (resp. H) is invariant under 

H (resp. G), the structure of a (left) AHL G-bundle on T*G induces 

a natural structure of AHC G-bundle on (T*G)^. de shall denote 

this bundle by A ( . f ) . In the special case where I is a coadjoint 

orbit Of through f we shall write /\f rather than A(0f). 

The structure of A f can be described more closely. In fact, 

using the left trivialization of T G we obtain an isomorphism 

(T*G)f SГ G * н
 r~

1
(f), 

f 

i* where r : <H*—* 4y is the restriction map. It follows that the 

space of isotropic fibers is isomorphic to 

G x
R
 0

f
 s G *

H
 H/H

f
 £ G/Hf 

and the space of coisotropic fibers is isomorphic to G/H. Moreover, 

the commutative diagram (1.1.1) becomes 
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H f l X 
G/rIf : > G/EÎ , 

where all arrows represeгt the natural G-equivariant pro/jections. 

It is easy to see that ( A
f
, J

f
) , where J« is the momєntum 

rnapping for the action of G on A
f
, is an AHL G-bundle ïîf f is 

IІ-invariant. Actually, we can prove a stronger result. 

(2.5) Proposition. ľ.eep the above notatio'n and let also (ty ) " 
denote the subspace of H-invariant elements in 4y . 

(a) ?or each f € (4y )г
-, ( Л

f
,J

f
) is an ЛHL. G-bundle. 

(b) I f (Я , J ) i s an AHL G-bundle o v e r G/Й, t h e n r ( « ľ ( J 0 ) ) 
(where o s t a n d s f o r t h e c o s e t H) c o n s i s t s of a s i n g l e 
e l e m e n t f, which t h e r e f o r e must b e l o n g to (>ty ) н , and th< 

map 

<Pj Î E —-> G/Һ *<sy* Ì e н-» ( T t { e ) , j ( e ) ) 

i n d u c e s a (G/rI)-isomorphis in between ( X , J ) and ( Л f , J f ) 

( t h e l a t t e r b e i n g i d e n t i f i e d w i t h a subbundle of G/ xov*). 

( c ) The map f и [( * f , J f ) l i s a b i j e c t i o n of (ty ) н o n t o t h e 

s e t o f (G/H)- i somorphism c l a s s e s of AHL. G-bunđles over" 
G/H. 

See [ L ] , ( 2 . 6 ) f o r a p r o o f . 

(2. б) Sympl ctic induction. It is easy to see that thэ corre-

spondence ï I—* Я(í) establlsh s a covariant functor from thз 

category of Hamiltonian H-spaceз tü thә cate^ory of Va.r.ilto^ian 

G-spaces. In the r al case, this functor iз a зyiлplectic counter-

part of th induction functor. The analogy between these functors 

is bas d^on,the theory of geom tric quantizatiqn which in some 

cases allows us to "quantize" the actions of-H on ï and G on 

Л(-Г) in such a way that the resulting unitary representation of 

G is equival nt to th repr sentation induced by thë representa-

tion of H corr sponding to ï. Cn such case will be considered in 

section 4. 

Holomorphic AHC bundle s em to b natuгal candidates for 

зymplectic mod ls of holomorphically induced representations. Lore 

about this will be said in section 4. 
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3« Holomorphic Larrangian bundles over complex flagmanifolds 

r'or the proofs of the following results the reader is referred 

to [ L ] . Throughout this section G denotes a connected complex seuii-

simple Lie group ard P a parabolic subgroup of G-; the Lie algebra 

of P is denoted by <f> . (,/e shall sometimes view Gr and P as linear 

algebraic groups.) 3y a Lagrangian bundle we shall always mean a 

holomorphic Lagrangian bundle over the complex flag manifold G/P 

(o will stand for>the coset p). The interest in this case is moti­

vated by the following theorem whose part (a) is due to Ozeki and 

.̂ â iuioto (tu./a], Th.2.2) while part (b) follows from standard pro­

perties of invariant polarizations (see e.g.[3], Chap.IV). 

(3.1) Theorem. Let (X,tf ,!.i, co,j) be a IIL G-bundle v/ith homoge­

neous total space X (here we make no assumptions about I«). Then: 

(a) I. is a flag manifold, M = G/P for some P; 

(b) r(j(Xo)) ={fi with f € (<ff)P and the map 

<Pj : XH-> (*t(x),J(x)) 

induces a morphism from (X, TC ,:,;, 06 , J) to ( A f, Jf) .i..oreover, 

<pj(X) is a ZariSivi open G-orbit on the total space £f of 

A f. (% has a unique structure of algebraic variety com­

patible with its manifold structure.) 

r 
It is natural to ask whether this theorem can be reversed, 

i.e., whether every AHL (.--bundle over G/P has a Zariski open G-

-orbit on its total space. The affirmative answer to this question 

follows easily from a theorem of itichardson [Hi] which asserts 

that each parabolic subgroup of a linear reductive algebraic group 

over an algebraically closed field has a Zariski open orbit acting 

by the adjoint representation on the nilradical of its Lie alge­

bra. 

(3,2) Proposition. For each f €({**)£, G has a Zariski open or­

bit Xf on the total space J)f of the bundle ( Af,Jf). 

(3*3) Corollary. JfU f) = Jf(Xf) (ZarisKi closure). 

The next result, which does not seem to be related to the 

representation theory, illustrates the difference between real 

and complex symplectic geometry - it has no analogue in the real 

case. 
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(5.4) Theorem. Any affine Lagrangian bundle over G/P has a 

unique structure of an affine Hamiltonian Lagrangian G-bundle so 

that the natural map ( >p* ) p —» H1(G/P, X 1) (induced by forgetting 

about the G-action) is a bisection (actually a linear isomorphism). 

V/e sketch the proof. The elements of (1° ) can be thought of 

as biinvariant 1-forms on P. Since these are closed, we can define 

a map (-f3 ) —>H1(P,<D) which is easily seen to be an isomorphism. 
vext, the spectral sequence of the fibration G —> G/P gives rise 

to an isomorphism H (P,<C) —»H2(G/P,€). finally, there is a map 

H1(G/P,£1) —»H2(G/P,C) resulting from the long exact sequence 

of cohomology groups corresponding to the short exact sequence of 

sheaves 

0 —V c —» & —> * 1 —-> 0, 

where & denotes the sheaf of germs of holomorphic functions on 

G/P. 'Since H1(G/P,&) = H2(G/P,0) = 0, this map is an isomorphism. 
vow it is quite easy to show that the diagram 

(>p*)p >H1(P,C) 

H1(^G/P, -X1) >H
2
(GД,C) 

consisting of the above described maps commutes, which clearly 

implies that (-f>*)
p
—»H

1
(G/P,2S

1
) is an isomorphism. Thus any 

affine Lagrangian bundle over G/P has a structure of an affine 

Hamiltonian Lagrangian G-bundle which is unique up to an K-auto-

morphism. The group of (G/P)-automorphisms of any AL bundle over 

G/P being trivial (since it is isomorphic to H°(G/P, 56
1
) = 0), 

this structure is in fact unique. 

Finally we shall characterize those A.HL G-bundles whose total 

spaces are G-homogeneous. 

(3.5) Theorem. For an AHL G-bundle ( A
f
,Jf), f € ( ^ * ) p , over 

G/P, the following conditions are equivalent: 

(i) the total space Bf of A f is G-homogeneous; 

(ii) Ef is a Stein manifold; 

(iii) the orbit Jf(Xf), where Xf is the unique Zariski open 

G-orbit on Bf, consists of semisimple elements (here we 

identify crV* with <ty by means of the killing form). 
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4. Coisotropic bundles over real flag manifolds 

Here G has the same meaning as in the preceding section. Hold­

over, we assume that G is defined over R (as an algebraic group) 

and let GR denote the corresponding group of real points. G^ is 

viewed as a real algebraic group or as a real Lie group. G0 deno­

tes the connected component of identity o^-the real Lie group GJR. 

For simplicity reasons the results of this section are formulated 

usually in terms *bf G^. QJR denotes a parabolic subgroup of GJR, 

that is, the group of real points of a parabolic subgroup Q of G 

which is defined cjver IR. The homogeneous space GJR/QJR is called a 

real flag manifold, //e write a. R for trie Lie algebra of ^ and 

4*R for the nilradical of (y JR. Me denote by LĴ  (resp. >W K ) the 

compact component of a Langlands decomposition of W|R (resp.a.^). 

' (4.1) Juppose that QJR has a compact coadjoint orbit of positive 

dimension on CX-JR. It can be shown that this orbit must be con-

tained in (^(R/^(R) (which we identify with a subspace of <f R ) . 

Lioreover, if choose a Langlands decomposition of ̂ ^, the compact 

orbit is also an P.^-orbit and if we identify it with an adjoint 

orbit in the Levi component of ^ ^, then this adjoint orbit gene­

rates a compact ideal. Thus Q^ has a compact coadjoint orbit of 

positive dimension iff some (and hence any) Levi component of <L JR 

has a compact ideal. 

^4.2) vte shall be considering AHC G|R-bundles Af over G^/OR 

(see (2.4)) for which the space of isotropic fibers is compact. 

These split into two classes: real AHL G^-bundles (which exist 

for any QJR) and bundles for which Uf is a compact orbit of posi­

tive dimension (whicti exist only for certain ^i a s w e s a w above). 

For the reasons of simplicity we assume that the orbit 0 f is con­

nected (in the usual topology). The total space of A f will be 

denoted, as usual, by Ef. 

(4.3) Complexification of *f. j^t f
C denote the complexifi-

cation of f. Then the AHC G-bundle /\fC over G/tj is a complexi­

fication of hf., That is, if we view the total space. Efc as an 

algebraic variety, then it is defined over IR in such a way that 

i3f coincides with the set 3fc{|R) of real points of Ef . 

(4.4) It is well known that the compact orbit Uf has an in-
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variant polarization which ia necessarily Kahler. This polarization 

is determined by a parabolic subalgebra of the reductive algebra 

f/tt ( <\ being the Lie algebra of Q and *b the nilradical of ̂  )• 

This parabolic subalgebra can be written uniquely as I0/** , where 

^ is a parabolic subalgebra of GJ. contained in <L . It is easily 

seen that f |*D is left invariant by the parabolic subgroup P of 5 

corresponding to jQ . Thus fck> defineš a holomorphic AHL G-bundle 

%M over G/P (cf. (2.4) and (2.5)). 

(4.5) P ropos i t ion . The HamiJ.tonian G--spaces fífc and £fc\ are 
x 140 

isomorphic. ' 
Proof. Let J^ and Jp denote the momentům mappings for the ac-

t i o n s of Q and P on T*G, r e spec t ive ly . Then Jp = vf% ° JQ» where 
rfCj, : <̂ -* —> Ý i s " t t ie r e s t r i o t i o n map. Thus 

j - 1 ( f c ) ^ j ; 1 ( f c | f ) . 

and we ob ta in a commutative diagram 

• . j - i ( f « ) — > J ; 1 U % > 

l 
Bjř 4 B f c | f 

whose top horizontál arrow is the inclusion. It is easy to see 
that the bottom horizontál arrow is the desired isomorphism. n 

(4.6) Suppose that the orbit Of is quantizable, i.e., it gives 
rise to a unitary representation U of Q R (U is necessarily finite 
dimensional and irreducible). Let Ind(Gfl,QR,U) be the representa­
tion of % induced by IT. According to (2.6), A f is a symplectic 
model of Ind(Gft,Qit,TJ). Geometrie quantization associates to A f 
the representation Indhol(Gft, (Qn)f • ̂ f» Ť ) bolomorphically in­
duced by a unitary character Xf of (QR)f corresponding to f 
(which exists because Of is quantizable) and the parabolic sub­
algebra -43 (see (4.4); we assume that 'p has been chosen in such 
a way that the corresponding polarization of Of is positive, 
which is always possible). Ind h o l(%, (QjOf, Xf,^jp) can be ob-
tained in two steps (of.CBl), the first being the holomorphic 
induction from (Qn)f to Q R which gives U (here we use the Borel-
-tfeil-Bott theorem) and the second being the ordinary induction 

Knihovna mat-lyz. fakulty UK 
oůú. mstemttlcké 

1 8 6 0 0 Praha-KutHn. Sokotevsků 83 
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from Q R to GR. It follows that Ind (GR,Q R,U) and Indhol(GR,(QR):ff 

Xf, |3 ) are equivalent. 

These facts suggest that A „cl is a symplectic model of 

In^hol(GR» (Qtl)f» Xf,|)) and the isomorphism (4.5) is a symplectic 

counterpart of the equivalence 

Ind(GR,QE,U) ~ Indhol(GE,(Q|R)f, X f f - p ) . 

(4.7) Theorem. GR has a Zariski o^en orbit Xf on the total space 

Ef of Af . 

Proof. It follows from (4.5) and (3.2) that G has a Zariski 

open orbit Xfc on Efc. Since Ef is Zariski dense in E^c, Xf = 

= XfCO Ef is nonempty. It is easy to see that Xf is a Zariski open 

GR-orbit. D 

Remark. Xf splits into a finite number of G0-orbits. 

(4.8) It follows from (4.7) that Jf(Ef) is a Zariski closure 

of a coadjoint orbit (cf. (3.3)). If Ef is G^-homogeneous, it is 

isomorphic to a Zariski closed coadjoint orbit (cf. (3.5)). If we 

identify <JJR with CJR by means of the Killing form, Zariski closed 

coadjoint orbits become identified with Zariski closed adjoint 

orbits. Such orbits are semisimple (i.e. consist of semisimple 

elements); however not every semisimple adjoint orbit is Zariski 

closed. Indeed, we can prove the following fact (which generalizes 

some results of Rothschild [Ro] ). 

(4.9) Theorem. Let X be an adjoint GR-orbit. Then the following 

conditions are equivalent: 

(i) X is Zariski closed; 

(ii) X is isomorphic (as a Hamiltonian GrR-space) to some Efj 

(iii) X is semisimple and has an invariant polarization with 

a compact space of isotropic fibers. 

Remark. If X satisfies the above conditions, then it is connec­

ted injbhe usual topology hence it is also a GQ-orbit. 

(4.10) If Q R is a minimal parabolic subgroup, the induced re­

presentations corresponding to the bundles Af belong to the 

unitary principal series. Symplectic analogues of some of those 

representations were studied by Guillemin and Sternberg who ob­

tained a special case of (4.7). More precisely, they have proved 
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([GS2], Th. 3.1) that, for some choice of f, E f is isomorphic to a 

coadjoint orbit. (4.7) seems also to be related to the results of 

Wakimoto [vVa] who used non semisimple orbits to realize the princi­

pal series representations. 
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