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SELF~-DUAL MAGNETIC MONOPOLES AND GENERALIZATIONS OF
HOLOMORPHIC FUNCTIONS

W. Nahm

Among the functions of two variables the holomorphic ones
have a special importance both in mathematics and in physics. It is
less evident, how to generalize the Cauchy-Riemann equations to
functions of more variables, not because such generalizations are
difficult to invent, but because there are so many possibilities.
However, we shall see that for four and probably for six variables
the most obvious generalizations together form-a tight and unique
structure and that a reduction of the four-dimensional case to three
variables yields nice results, too. At first we shall consider the
local forms of the equations, later the consequences of global con-
straints.

In 2n-dimensional oriented Riemannian manifolds M one may
introduce local ﬂomplex structures in the tangent spaces TMX of
points xEM. If these structures can be integrated to a global com-

plex structure J, holomorphic functions f:M>C can be defined by
J df = idf, (1)

However, J is not unique for n>1, Thus one is led to introduce the
fibre bundle E over M which has as fibre over x the complex struc-
tures in TMx. This bundle has n(n+l1)/2 natural complex coordinates.
Instead of functions on M one may now consider meromorphic functions
in E. At first this seems to introduce unwanted new degrees of free-
dom, but this is not really the case, as the fibres are compact and
support only restricted classes of meromorphic functions.

For n=1 the unique J is given by the Hodge ¥ operation, such

that one obtains the Cauchy-Riemann equations

xdf -_:‘Jf. (2)
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This suggests the alternative generalization

"

x¢¥&) = dkd (3)

where w now is an (n~-1)-form. Eq. (3) is called the self-duality
equation for dw. We shall pay little attention to the distinction
between self-duality and anti-self-duality, as ¥ changes sign for
reversed orientation.

We see that.ngtural holomorphic maps from M to C do not exist,
but that either M ér C has to be enlarged to a space of more di-
mensions. This also applies to the generalizations discussed below.

Eq. (2) implies

af =0 )

where

A= dxdyr - xdsd )

is the Laplace-Beltrami operator. Thus another generalization of
eq. (2) is obtained frgm the search for a linear equation the solu-
tionsof which belong to the kernel of 4 . This is basically the way
the Dirac equation was discovered. At least locally one may asso-

ciate a spin bundle S to the tangent bundle TM and write for sections

vy of S

7 v O ®

The fibres of S are Z(n‘l)—dimensional and the q, are matrices

acting on the fibres and satisfying

g e = g 28

where g is the metric. .For conformally flat spaces eq. (6) implies
the Laplace eq. (4) for the components of V¥ .

Actually eq. (6) is the Weyl equation, which also was used by
Fueter as a generalization of the Cauchy-Riemann equations. Indeed,
for n=1 the q, are numbers and may be normalized to (1,i). The

Dirac equation is written with
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- [O0
Z} *0 (8)
fr
and also may include a mass term.
If the metric is not conformally flat, the Weyl equation does

not imply the Laplace equation. Instead one may use the factoriza-

tion
A= (de+ v )(de-xd) 9)
leading to the Kihler equation

(de-xd)w=0, (10)

dere the differential form w has components of various degrees,

which may, however, be restricted to be even or odd, writing
K - .
<) w = 2w ) (11)

where K is the operator which gives the degree of homogeneous forms.

Once such a restriction has been imposed, one has
K (da-wd) = 2 )i (de-2d)i®e (1

and one may impose in addition

iK*w = fW (13)

where the constant ¢ has to satisfy
o
£« 2 )", (14)

With these restrictions, w has 4! components. Finally for even n
these components may be required to be real.

Restricting w to a homogeneous form of .degree n, eq. (13)
means that it is self-dual and eq. (10) that it is closed., Thus
eq. (3) may be regarded as a special case of the Kaﬁler equation.

| On conformally flat spaces, the K#hler eq. (10) reduces to
2™t

to flat space and using the translationally invariant forms as a

Weyl quations, as one sees easily by transforming conformally

basis. The restrictions of eq. (11) and (13) redpcg this number to
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A“_l. If in addition one uses real w, one sees that for n=2 the Kih-
ler equation becomes no more redundant than the Weyl equation.

From now on the manifold M will be assumed to be conformally
flat. We have found three different ways to generalize the Cauchy-
Riemann equations: Analytic function theory on the bundle E, the
self-duality equation and the Weyl equation. For n=2 all three
approaches are closely related, which is the basis of Penrose's
twistor method]).

In general the fibres of E are of the form S0(2n)/U(n). For
n=2,3 these spaces are projective, namely CP] and CP3 respectively,

as one sees from the isomorphisms

so() = (Su(x) x SU2))/ zZ, , (15)
So{é)-—SU(‘/)/Zz . (16)

The underlying linear spaces 02 and Ca may be identified with the

dual of the fibre of the spin bundle S, as it also happens trivial-

. . 1 . s
ly for n=1, where the fibre is a C . The dimensions are correct, as

Glim((so/‘z”)/u("))*1 = -2"-1 for n=1,2,3. (17)

2 . . . .
For u€Cor Ca, resp., analytic functions on E satisfy the equations

24 .0 (18)
du
and
(D‘u)f =0, (19)
with

.D=7’“§., (20)

when f is written as a function of x€EM and u. For n=1,2 the compo-
nents of eq. (19) are independent, due to

n-1
n=2 for n=1,2, (21)

but for n=3 among the four complex components only three are linear-

ly independent. The latter case has been studied much less than the
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by now standard twistor formalism for n=2, and we shall not conside
it further. )

There are no globally holomorphic non-constant functions on
CP1 or CP3, so one has to investigate functions with simple poles as
the next simplest case. The poles introduce additional degrees of
freedom, which one eliminates by forming equivalence classes, using
the Cech cohomology H](E(—l)). Its elements can be written in the

form

j ’jq "iz ’ (22)

where each g; has only one simple pole. Now according to eq. (19)
Du annihilates g, but it also maps the g; into analytic functions
of CP], which have to be constant, as they can be extended to a

common globally analytic function., Thus

}V = {D-u)/4 = (D‘u}/‘.‘, (23)
only depends on x. Because of eq. (7) one has

uTeDDu=0 (24)
and
WDy = 0 (25
for all u. Thus ¢ satisfies the adjoint Weyl equation
D+}” -0, (26)

Conversely, this equation is the integrability condition of eq. (24).
We have seen that for n=2 indeed the various generalizations
of holomorphic functions are closely related. But this case has
another important feature, which was discovered first by physicists,
though there is now also compelling reason for its study inside pure
mathematics: The stafements made so far generalize easily to the case
where M is replaced by a principle fibre bundle, locally MxG, and
derivatives are replaced by covariant derivatives given by a connect-
ion on this bundle. The connection can be written locally as a°
l-form A taking values in the Lie algebra of G. Acting on sections

of some associated bundle given by a representation P of G, the
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covariant derivative San be written in the form

dyf = df + plA)af (27)
One has

(o/A)z ‘f/F)A (28)

where the 2-form F is the curvature of the connection.
The twistor approach works as before, as long as the compo-
nents of eq. (19) remain compatible, when derivatives are replaced

by covariant derivatives. The compatibility condition is
F = xF (29)

i.e. the self-duality equation for th= curvature.
Conversely we shall show that small deformations of the self-
duality equation yield the Weyl equation in K#hler form. First we

have to exclude variations of the potential of the form

JA = d, F (30)

’

as these only yield gauge transformations, i.e., reparametrisations
of the bundle. One can achieve orthogonality of 6A to all local

gauge transformations by requiring
a/AxJA-O, (31)
Moreover one has

§F = d, dA . (32)

Thus small deformations of the self-duality equation yield solutions

of the Kihler equation of type
w= JA-x2dA (33)

i.e. just those solutions of odd degree which fulfil eq. (13) with
e==i.
So far all considerations have been local on M. With suitable

global restrictions one can do much more. In particular the -differen-
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tial operators introduced above become elliptic operators with cal-
culable index. The solutions spat¢es of the generalizations of the
Cauchy-Riemann equations become finite dimensional. As the self-
duality equation for the curvature is no longer linear, its solution
spaces have an interesting topology, which can be related to the to-
pology of M. For M=S4 all solutions of eqs. (26) and (29) are known,

at least up to algebraic manipulationsz).

3) is M=R3xR1, with an SU(2) connection

Another interesting case
. . . . . . . 1
which is required to be invariant under translations in R . Moreover
one requires the curvature to be square integrable over R3. If one

writes the connection in *%¢ form
3 . v
A= 2 A,-a(x' +}0/x , (34)
is1
the self-duality equation for the curvature is

F(R?) = *0/,45’ ' (35)

This is now an example of a differential equation in an odd dimen-
sional space, which nevertheless is closely related to the Cauchy-
Riemann equations, as we shall see.

One can show that the connection reduces asymptotically to a
U(1) connection. Thus ésymptotically the curvature becomes an exact
2-form, and ¢ satisfies the Laplace equation. More precisely one

can write
A
-cr
f’ff"‘+0("/’(cl)' (36)
where § 1is of unit norm and asymptotically is a covariant constant,

a(Af = O/ex/o(-Cf)), (37)

whereas. ¢, is a scalar function satisfying

Af‘“ = 0“___ : (38)

Asymptotically

fa: = - 24"-_ + O(r?) . o (39)

N .

with integer k, such that ¢ . is the potential of a magnetic mono-
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pole configuration of total charge k. The charge is magnetic rather
than.electric, because the curvature is in spatial planes, not in
space-time planes as for electric charges. Actually, time has not
been introduced at all, and the metric in R3le has been taken to be
the standard positive one.

¢,  can be continued to the whole of R3 with the exception
of a finite number of closed algebraic curves and isolated points.
If continued around those curves, it becomes multivalued. From the
curves and points';ne may reconstruct the whole solution, though
this has not yet been worked out in detail.

Instead, all solutions can be constructed using the Weyl
equation (26). The solutions of this equation admit a Fourier ana-

lysis, such that one may write
}a(x,z) ~ exp (ix¥z), (40)

Let ¢ (x,z) for given z be an orthonormalized vector of solutions
of eq. (26), spanning the space of all solutions which are square

integrable over R3. Furthermore adjust the z dependence, such that

I'Y’*%}”Oﬂ)‘ = ix” )

Then one can prove easily that the matrices

Titz) - /V’LX; ¥ o ’x (42)

fulfil the equations

dTilz) | i €3k i) T “z)

odz (43)

The matrices Ti(z) are k-dimensional for |z|<c and vanish outside
- this interval, as one sees by calculating the index of the Weyl
operator for the fundamental representation of SU(2).
The eq. (43) is itself the self-duality equation for the cur-~

vature of a U(k) connection
T = T't=) 0//0; (44)

in a space with coordinates (pl,z),which is invariant undex transla-
tions of the pl. Eq. (43) is integrable in terms of Riemannian

0 -functions. The potential A can be obtained back from T using the
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Weyl equation in (pi,z) space with connection T.

All this seems to be rather far removed from the usual theory
of holomorphic functions. But using eq. (43) Donaldson has shown
that for fixed c the space of self-dual SU(2) monopoles of charge k
has the same topology as the space of all holomorphic maps of degree
k of CPl onto itself which fix one pointQ). These maps are rational
and can be written as quotients of two polynomials. The denominator

is given by

Q(Y) = det (wiT'(z)-1), (45)

Wwhere u is a fixed isotropic vector. By eq. (43) this expression 1is
independent of =z. '

In Donaldson's construction u has to be fixed, but if it is
varied the projective space with coordinates (u,Z ) can be identi-
fied with the space of oriented lines in R3. Eq. (45) determines
a curve in this space, and eq. (43) translates into a linear flow
in the Jacobian of this curve. Moreover, the family of lines in R3
given by this curve has an envelopeyconsisting of closed algebraic
curves in R3 and isolated points - just those curves and points on
which L is singular.

It is not yet clear, how Donaldson's results generalize to
other gauge groups, but at least for the description of the moduli
space of more complicated self-dual monopoles, there are plausible
conjectures. Let ©, be the value of the Higgs field at some point
of the sphere at infinity. At other points of that sphere one obtains
the value by conjugating @, with some element of the gauge group G.
All possible values correspond to the coset space G/G(wo), where
G(wo) is the subgroup of G which commutes with wo.Such coset spaces
have a natural complex structure. Now new results by Atiyahs) indi-
cate that the moduli space of self-dual monopoles with this asympto-
tic behaviour corresponds to the holomorphic maps from CP into

G/G(wo). For G=SU(2) one has

G/6lp.) = Suz)/v(1) - P, @)

which yields Donaldson's result,

Non-linear partial differential equations have not received
very much attention by mathematicians, as there are few general
results and there seemed to be no point in studying special equations

to great depth. Due to many nice results concerning the self-duality
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equation for gauge field strengths in four dimensions this attitude
seems to be changing. It is certainly significant that this equation

turned up in mathematical physics.

REFERENCES

1) EASTWOOD, M.. PENROSE, R., WELLS, R.O0., Comm.Math.Phys. 78 (1981)

305. y
2) ATIYAH, M., HITCHIN, N., DRINFELD, V., MANIN, YU., Phys.Lett 65A
(1978) 185,

3) NAHM, W. "Self-dual monopoles and calorons'", XII Colloquium on
Group Theoretical Methods in Physics, Trieste 1983.

4) DONALDSON, S. "Nahm's equations and the classification of mono-
poles", Princeton preprint, 19.3.

5) ATIYAH, M. "Instantons in two and four dimensions", Oxford pre-

print, 1984,



