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COMPACTNESS OP TRAJECTORIES OP DYNAMICAL SYSTEMS 

IN COMPLETE UNIFORM SPACES 

Wojciech Bartoszek and Tomasz Downarowicz: 

In this paper we investigate the asymptotic behaviour of trajectory 

{ H>t(x)}ts o >
 f o r a semigroup of mappings {^t} t ^ 0

 of a 

Hausdorff space X into itself. More precisely : the main subject 

of our interest is to establish conditions equivalent to precom-

pactness of the trajectory and of the set of limit points for a 

given point x € X. This topic has already been studied in [7], [&] 

and [6]. In our case the space X is in addition equipped with a 

complete uniform structure 21 (see [4] for definition). We also 

assume the following four conditions for the family {^tj : 

(i) ?0(x) = x , for all x<£X 

( i i ) f t o f s - Y t + S , for a l l t , s € R + 

( i i i ) lim f t ( x ) = <Ps(x) f for a l l s e R+ 

t -* s 
(iv) for every W e 21 there exists Vegi such that for all 

x, y with (x,y)€ V and all t£ 0 we have (Yt (x),4
,
t(y))€ W. 

The first three of the above conditions mean that the mappings ^t 

form an one-parameter continuous semigroup acting on X. The last 

condition establishes its equicontinuity. 

For a fixed element W of $ by 2ly we will denote the collection of 

all the elements V which fulfill (iv). We also write Wx instead of 

{ y : (x*y)e W} • For contraction semigroups acting on subsets of 

Banach spaces the condition (iv) may be replaced by an adequate 

norm - condition. In this case many interesting results were obta­

ined, dealing with limit properties of the. trajectory 2f(x) = 

= { T\(X) : t>0} (see [1], [3], [5]). Subsequently in [2] were 

obtained some analogous results for nonextending semigroups acting 

This paper is in final form and no version of it will be 

submitted for publication elsewhere. 
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on Polish spaces. The methods of proofs used there have let hope 
that further generalisations are possible. 

We start by proving the following lemma, which is an adaptation of 
a well known result from [3] (Theorem 1) . 

Lemma' 1. For every x € X f the set of limit points 
w(x) = C\ { T^-CX) : t) s} is either minimal or empty, 

s ̂  u 

Proof. We have to show that KCy) = w(x) f for every yew{x). 
The inclusion Q is immediate because for every t^O, the point 
Vt(y) is a limit of V^(x). Now let z£w(x) and U be an open 
neighbourhood of z. There exists an element W of the structure Ei 
such that for all <X large enough C^-t^Cx), v) £ W implies v6F, 
where t«-*«> is some fixed net satysfying ^P-^CxJ-^z. We can also 
easily find a net s^—.»<» with ¥ t„-Sdf (x)-*y. For V€ ?£w we have 
( y t«-g« (x) f y) € Y fog some * . Thus Ctt§t(x)9 ¥B«(y»

6Vi so 
^g^CyJ^U f hence wCx)£ XCy) f and the minimality is proved. 

By X0 we? shall denote the set of all x ^ X such that the trajectory 
X(x) is precompact. 

Lemma 2. The set X0 is closed and %-invariant. 
Proof. Let x^-^x f where xt0( e X0 . For the pre compactness; of 

tf(x) it is enough to show that tfCx) is totally bounded with respect 
to % (see C4J). For VeU let Wcgfc be such that (bfa)eWf 

(bfc)6 W and (cfd)e W imply (afd)e U. By equicontinuity, four some oC 
we have ({ft(xv)9 ¥t(x))€ W for everjr t^ 0. Now JCxcc) is precom­
pact, thus there exists a finite set of points yn -= T°tnCxe.:) such 
that W y n cover \(x«). Hence, for fixed t£R + , ({ft(x0l)9 ^ ^ ( x ^ e W 
for some n. Also (¥ t nCxJ, T°tn(x))<-- W and thus (Vt(x), H>tn(x))6 U. 
We have obtained a finite covering U Z n of J(x), where zn = ¥ t n(x) f 

so the pre compactness of J(x) is proved. The invariantness of X0 is 
obvious and so the proof is complete. 

Theorem. Let {V-t} t> o be an equicontinuous semigroup acting 
on a complete uniform space X. Then the following conditions are 
equivalent : 

a) x e X0 

b) wCx) is nonempty and compact 
c) there exists a vPt-invariant probability measure MX 

on w(x) 
d) for every continuous function F : X—*E (E is a Banach 

space) the Bochner integrals 
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T 
T" J F(ftCx))dt are convergent for T-*<» to a limit 

P(x)e E. 
If the above holds then P is a continuous invariant function 
on X0 and it equals J F(y)#^;(dy) > where M X is the unique 

invariant probability measure on w(x) . 
Proof. a)=>b) is obvious by the definition of X0 and w(x). 

b)=>c) is the well known corollary of the Markov - Kakutani theorem, 
c)==>b). Suppose that w(x) is non-compact. Then it is not totally 
bounded and thus there exists an infinite collection of nonempty 
pairwise disjoint open sets of the form W Z n , where zne w(x), and 
We2i* Since w(x) is minimal we may (changing if necessary the set 
V) choose the points z n of the form ^ - ^ ( Z Q )

 f o r some zo 6 w( x)* 
Now, for V€ 2ZW we have Vt^Zo) - wz n*

 Bv invariantness of j4X the 
measures of the sets W 2 are at least JAX (

V
ZO) • This is a contradic­

tion since by minimality of w(x) /*x(Vz0)> ° and, on the other hand, 
j \ x is finite. b)=»d) see [1j Th. 3.2 and Corollary 3.1 . 
d)=»a). Suppose x^X 0, i.e. tf(x) is not totally bounded. An easy 
argument using the uniform structure allows as to find an infinite 
collection of open pairwise disjoint neighbourhoods U n of certain 
points x n = ¥-(- (x) such that every convergent net is (starting 
from some index) contained in at most one of U n s. V/e may also 
assume that for every n the set U n n {^(-O* t <. tn} is of the form 
{ ¥t(x)> * ̂  (tn-£, "tn]} •

 Le"t -?n be continuous functions on X with 
Pn(xn) = 1, Fn = 0 out of U n (see [4] for the existence of Uhryson 
functions on uniform.spaces). The function P = 2^.1 fin Fn *s con~ 
tinuous which contradicts d) whenever j6n increases rapidly enough. 
To prove the last assertion of the Theorem consider E = R and 
restrict all the functions P to the compact set S(x). Now observe 
that the map F-*F(x) is a linear nonnegativ functional on C(fr(x)) . 
So, by the Riesz theorem it is represented by a Radon measure Vx 

on tf(x), i.e. we can write F(X) « <P, Vx)« Taking F s 1 we obtain 
that 1^ is a probability measure. To see the invariantness of Vx 
denote Ps -= F © ^ 5 for F* C(tf(x)) and s^ 0 and calculate : 

T 
T~1 J Fs C^t(x))dt - > <ps, y x> = <P, - V x * ^ - On the other hand' 

nT T+s J — .Í.T.J 
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T+s S 

-=T'1(T+s)(T+s)"
1 J F(Yt(x))dt - T~

1 J P(ft(x])dt —> <P, V*). 
uO vO 

Our last step is to check that Vx is supported by w(x). Let y^w(x). 

There exists W $ 2L such that y does not belong to the set 

U = bL(x\Wz together with its open neighbourhood. But ty-t(x)€ U for 

big t, hence for any continuous P : X—*R with F(y) = 1 and F • 0 

on U we have Fs = 0 on g(x) and <F, Vx> = <FS, l̂ x> = 0 for s big 

enough. The uniqueness of the measure Vx follows from the well known 

Halmos - von Neumann theorem. We omit the easy standard approxima­

tion argument for proving the continuity of P on X0 • 
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