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COMPACTNESS OF TRAJECTORIES OF DYNAMICAL SYSTEMS
IN COMPLETE UNIFORM SPACES

Wojciech Bartoszek and Tomasz Downarowicz

In this paper we investigate the asymptotic behaviour of trajectory
{ P1(x)} 3 o » for a semigroup of mappings {#:} ty0 of a
Hausdorff space X into itself. More precisely : the main subject
of our interest is to establish conditions equivalent to precom-
pactness. of the trajectory and of the set of limit points for a
given point x € X. This topic has already been studied in {71, (8}
and [6). In our case the space X is in addition equipped with a
complete uniform structure &% (see [4] for definition). We also
assume the following four conditions for the family {\Pt}

(1) fo(x) = x, for all x€X
(i1) Yoo g =Yg » for all t,s€R,
(iii) lim ‘Pt(x) P5(x) , for all seR,
t—s
(iv) for every We 20 there exists Ve & such .that for all

x, y with (x,y)€ V and all t) O we have (¥4 (x),f4(y))€W.

The first three of the above conditions mean that the mappings \Dt
form an one-parameter continuous semigroup acting on X. The last
condition establishes its equicontinuity.
For a fixed element W of 2 by Zl.w we will denote the collection of
all the elements V which fulfill (iv). We also write Wy instead of
{ ¥y ¢ (x,7)e W} o For contraction semigroups acting on subsets of
Banach spaces the condition (iv) may be replaced by an adequate
norm - condition. In this case many interesting results were obta-
ined, dealing with limit properties of the trajectory ¥ (x) =

{‘Pt(x) : t20} (see (11, (3], [5]) Subsequently in [2] were
obtained some analogous results for nonextending semigroups acting
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on Polish spaces. The methods of proofs used there have let hope
that further generalisations are possible.

We start by proving the following lemma, which is an adaptation of
a well known result from [3] (Theorem 1) .
Leqzma'1. For every x€ X , the set of 1limit points
w(x) = sQO 1% (x) : t> s} is either minimal or empty.
7

Proof. We have to show that ¥(y) = w(x) , for evermy ye w(x).
The inclusion € is immediate because for every t2 0, the point
Y4(y) is a limit of ‘Pt(x). Now let z€w(x) and U be an open
neighbourhood of z. There exists an element W of the structure Zl,
such that for all « large enough (‘Pt,(x), v) € W implies ve€TU,
where te—>® is some fixed net satysfying Wi, (x)—z. We can also
easily find a net s,— with ¥4 g, (x)—y. For V€ Uy we have
(P ty-s5.(X)y y)€ V for some @ . Tus (P, (x), ¥Pg (y)EW, so
Y5 (y)€U , hence w(x)< ¥(y), and the minimality is proved.

By X, we shall denote the set of all xe X such that the trajectoxry
¥(x) is precompact.

Lemma 2. The set X, is closed and Y;~invariant.

Proof. Iet x,,—;x » where x,€ X, . For the precompactness of
¥(x) it is enough to show that ¥(x) is totally bounded with respect
to % (see [4]). For Ue gl let We @l be such that (b,a)e W,

(b,c)e W and (c,d)e W imply (a,d) € U. By equicontinuity, for some o
we have (‘Pt(x,), \Pt(x))e W for every t2 0. Now ¥(x«) is precom-
pact, thus there exists a finite set of points y, = ‘Yt,(x«) such
that Wy cover ¥(xy). Hence, for fixed teR, , (¥4 (X«), \{ftn(xq))e W
for some n. Also (Pt (X4), \”tn(x))é W and thus (¥4(x), Py, (x))€ U.
We have obtained a finite covering Uz, of ¥(x), where zp = Yy (x),
so the precompactness of ¥(x) is proved. The invariantness of ‘X, is
obvious and so the proof is complete.

Theorem. Iet {‘Pt} t> 0 be an equicontinuous semigroup acting
on a complete uniform space X. Then the following conditions are

equivalent ¢

a) x € Xg
b) w(x) is nonempty and compact .
c) there exists a Yi-invariant probability measure my
on w(x)
d) for every continuous function F : X—E (E is a Banach

space) the Bochner integrals
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T
- ‘f F(¥4(x))dt are convergent for T—® to a limit
0

F(x)e E. _
If the above holds then F is a continuous invariant function
on X, and it equals J F(y) N (dy) , where py is the unique
° w(x) ,& /‘

invariant probability measure on w(x).

Proof. a)=>b) is obvious by the definition of X, and w(x).
b)=>c) is the well known corollary of the Markov - Kakutani theorem.
c)=>b). Suppose that w(x) is non-compact. Then it is not totally
bounded and thus there exists an infinite collection of nonempty
pairwise disjoint open sets of the form Wg, , where zp€ w(x), and
We 2b. Since w(x) is minimal we may (changing if necessary the set
W) choose the points zp of the form Yy (z,) for some zp€ w(x).
Now, for Ve &y we have ?+,(Vz,) € Wpy» By invariantness of px the
measures of the sets W; are at least ux (VZO) . This is a contradic-
tion since by minimality of w(x) /‘x(Vzo)> 0 and, on the other hand,
Mx is finite. b)=>d) see [1] Th. 3.2 and Corollary 3.1 .
d)=>a). Suppose x¢ X5, i.e. §(x) is not totally bounded. An easy
argument using the uniform structure allows as to find an infinite
collection of open pairwise disjoint neighbourhoods Uy of certain
points x, = ‘Ptn(x) such that every convergent net is (starting
from some index) contained in at most one of Un's. We may also
assume that for every n the set Upn {¥t(x), t{tn} is of the form
{¥+(x), te(ty-¢, tnl}. Let F, be continuous functions on X with
Fn(xp) = 1, Fy = 0 out of Uy (see (4] for the existence of Uhryson
functions on uniform.spaces). The function F = 2111 Isn- P, is con-
tinuous which contradicts d) wheneverllsn increases rapidly enough.
To prove the last assertion of the Theorem consider E = R and
restrict all the functions F to the compact set ¥(x). Now observe
that the map F—F(x) is a linear nonnegativ functional on C(X_(_;c—)) .
So, by the Riesz theorem it is represented by a Radon measure Vy
on ¥(x), i.e. we can write F(x) = {F, Vx). Taking F = 1 we obtain
that Yy is a probability measure. To see the invariantness of Dx
denote Fg = FoYg for Fe C(¥(x)) and s» O and calculate :

T
v .r Fg (Py(x)) at — (Fgy Vi) = {F, ))x°‘P;1). On the other hand’
. O . )

] T T+s
T J‘ Fg (‘Pt(x)) dt = T-1 j\ F(¥4(x))dt =
0 s '
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T+s $
=371 1+s) (T+s) ™" XO F(¥4(x))dt - ' «Yo F (¥ 4(x))at — (F, Vo

Our last step is to check that Vy is supported by w(x). Let y¢ w(x).
There exists WéZL such that y does not belong to the set

U = zew(x)wz together with its open neighbourhood. But tP-g;(x)€ U for
big t, hence for any continuous F : X—R with F(y) =1and F=0
on U we have Fg = O on §(x) and <F Vy) = {Fg, YV = O for s big
enough. The uniqueness of the measure Py follows from the well known
Halmos - von Neumann theorem. We omit the easy standard approxima—
tion argument for proving the continuity of F on Xo .
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