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NORMS ON SUPER-REFLEXIVE BANACH SPACES 

Finet Catherine 

1. Abstract. We study uniform convexity and smoothness properties 

satisfied by all the equivalent norms of a super-reflexive Banach 

space. 

Introduction. G. Pisier proved that every super-reflexive Banach 

space has an uniformly convex equivalent norm with a modulus of 

convexity of power-type ( [ 10 ] ). A natural question is : what 

can be said of any equivalent norm on a super-reflexive Banach 

space ? We show that every equivalent norm has some uniform 

convexity and smoothness properties. 

Notations. Let X be a Bananh space and N be a norm on X, we note 

BN(X) the unit ball of X, SN(X) the unit sphere and X* its dual. 

If F is a subset of X, conv(F) is the convex hull Of F. 

I. Strong extreme points. 

Let us consider the notion of strong extreme point. This notion 

has been introduced par K. Kunen and H.P. Rosenthal ( [ 7 ] ). 

Definition 1. Let C be a closed convex bounded set. A point x 

in C is a strong extreme point if for every e > 0, there exists 

V (e) > 0 such that : 

y,z e C , II ^Y~ - xll < T? (e) => By - zll < e . 

If every point of the unit sphere is a strong extreme point of the 

unit ball, the norm is said midpoint locally uniformly rotund 

.(MLUR). 

Obviously, [a norm is locally uniformly rotund ] =* [the norm is 

MLUR ] -fr [ the norm is rotund ] . The converse implications do not 
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hold. 

If.x is a denting-point, then x is a strong extreme point and 
x is extreme. The converses are not true. 

The modulus A(X,E) which is defined below measures "how much" a 

pointcis a strong extreme point of the unit ball. 

. Definition 2. Let X be a Banach space with norm II . II . 

The modulus'of strong extremality in x is the number : 

\{/e > 0, A | - (x, e) = inf {1-A; "it : I Ax ± TI < 1, I TI > e} . 

It is easy to show that x is a strong extreme point of the unit 

ball if and only if A-
 fl
 (x,e) > 0, Ve > 0. 

Let us give now the main result of this section. 

For any equivalent norm I.I on a super-reflexive Banach space X, 

we let : 

n
f A (K,q) = {x e S- - (X) : A, j (x,e) > Ke

q
,^e > 0} 

(K > 0, q > 2) . 

-With this notation, the following is true : 

. Theorem 3. [4 ] , [5 ] . Let X be a super-reflexive Banach space 

and I.fl be an equivalent norm on X with modulus of convexity, of 

power-type (6 -(e) > Ce
q
). N is any equivalent norm on X. 

0 • B 

Then, for e v e r y 17, 0 < 77 < 1, there e x i s t s K (1?) > 0 such that : 

B
N
( X ) C conv [ n

N
(K(t?),q) ] + rj B

N
( X ) . 

Proof. The proof of this theorem is based on a technique of 

J. Lindenstrauss for obtaining strongly exposed points in weakly 

compact convex sets ( [8 ] ). 

The theorem follows from a simple lemma. 

.Lemma 4..- [ 4 ],[ 5 j. Let (Y,ffl J ) be an uniformly convex space 

with modulus 'of convexity 6
( R
 . Let S : (X,N) -* (Y,III .III) be an 

isomorphism into Y. If S attains^its norm in x, then x is a strong 

extreme point of B
N
(X) and moreover : 

V x ' e ) > 6 I . I < . ?!-i> • ІSП DS 
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Remarks 

1) In the case where dim X is finite, this result can be obtained, 

more directly by using arguments of strong compacity. 

2) The example of X = ̂  I shows that the theorem is not true in 

general for a reflexive space X. It would be nice to know if the 

validity of theorem 3 characterizes the class of super-reflexive 

Banach spaces. 

3) Let us introduce the notion of </>-strongly exposed point _.:. in 

what follows we denote by </> an increasing function in [0,1 [ such 

that </> (6) = 0. 

Definition 5. [4 ] Let C be a subset of a Banach space X. and 

x e C We say that x is </>-strongly exposed in C if there exists 

f e x* such that 

1. f(x)' = sup {f(y),y e c) 

2. if y e c satisfies f(x) - f (y) < </> (e) for some . e.]0,U 

then Ox - yB < e. 

JThen f is called a </>-strongly exposing functional for x. 

Let II J be a norm of a Banach space X, let us denote E- - (v?) ..t_ie_. 

set of the </>-strongly exposed points in the unit ball B- |.(X>̂ _. 

-Proposition 6. [ 4,] Let X be a super-reflexive Banach space.and_ 

II. II be an uniformly convex norm on X such that <5g -(e) >.C£r~;._ 

Ve>0; N is an equivalent norm. Then, for every rj.s 1&,JL_[_,_; 

there exist a function </> and a constant K(T>) such that.; 
V 

BN(X) C conv [ EN(<^T?)
 n 0N(K(t|),q) ] + V BN(X),_. .. 

Remark. By using an argument of J.M. Borwein ( [1 ]) it..i.s_„p_3SJ5.i:r_ 

ble to show that the family of the </> -strongly exposing functional? 

for a point of the unit sphere is an T?-net in S(X*) ( [4 ] , [5 ]) , 

II. Applications. 

0 

1. Quasi-transitive_Banach spaces. 

The theorem 3 implies 

Corollary 7 [ 4 ] . A super-reflexive quasi-transitive Banach space 

is uniformly convex with modulus of convexity of power-type. 

2 . Unif orm apjjroximation j_roperty. 

["Definition 8 [ 6 ] . A Banach space X is said to have the X-uniform 

approximation property (X-u.a.p.) if Ve > 0,V k integer/ V F sub-

space of X with dim F = k, there exists an operator T : X -> X with 
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1) rk(T) < nx(k,e) 

2) B TB < X 

3) DTx - xB < e for x e B(F) . 

Where nv(KVe) is an integer which depends on k and e, but not on 

the space F. 

J. Lindenstrauss and L. Tzafriri have proved that a super-reflexive 

.space X has 1-u.a.p. if and only if X* has 1-u.a.p. ( [9 ] ) . 

S. Heinrich extended this result to general spaces by using the 

ultrapowers ( [6 ] ) . The theorem 3 permits to get their result 

and an explicit computation of nx*(k,e) for every equivalent norm 

on X. 

Let X be a super-reflexive Banach space and e > 0. By a result 

of R.E. Bruck ( [2 ]) there exists an integer p(e) such that 

V F C B(X*), conv F £ conv , *F + e B(X*) 

Let k be an integer and F a subspace of dimension k, the cardinal 
-k 

of an e-net of the unit sphere of F is maximized by K.c where K 

is a.constant which does not depend on F. 

With these notations, we get 

Theorem 9 [4 ] Let X be a super-reflexive Banach space. 

If X has 1-u.a.p. for an arbitrary equivalent norm then for every 

e > 0, k integer, one has 

nx*(k,9e) < nx(K e"k p ( e ) , * e(e)). 

3 . Duality^ with__smoothnes£ properties . 

Definition 10. A Banach space (X,B.II) belongs to the class C- if 

for every v ^ ]0,1 [ , there exists a function </> such that 

B„ ^ | (X) C conv E„ j (*) + T? B| j (X) . 

When this property of uniform exposition is transformed by duality, 

we obtain a condition of uniform smoothness, more precisely : let 

us recall a definition which has been introduced in ( [ 3 ] ) . Let X 

be a Banach space. V(X) is the set of the x in the unit sphere 

where the norm is Fr§chet-smooth and for every x e V(X), we denote 

f the differential of this norm in x. 

Definition 11. X is almost uniformly smooth (a.u.s.) if there 

exists a subset A of V(X) such that 



NORMS ON SUPER-REFLEXIVE BANACH SPACES 41 

a) V e e ]0,1 [ ,3 5 (e) > 0 : y € B(X*), x e A and 

y(x) > 1 - 6(B) "» ly - f . / < e ; 

b) the set {fx,x e A} is a (1-e)-norming subset of X*. 

Let us point out that this terminology is different from the 

terminology we used in ( [ 3 ] ) . 

Proposition 12. [ 4 ] . X belongs to the class C if and only if X* 

is almost uniformly smooth. 

Propositions 6 and 12 give us the following result : 

Proposition 13. Every super-reflexive space is almost uniformly 

smooth for every equivalent norm. 

Remark. . 

The almost uniform smoothness property is -far from implying-refle-*--

xivity.. Examples of a.u-s— spaces-are aiven in [ 3-}-:- c (T4, £ {-F-}* 

Kllp.lq).. Hl*.lq) (1 < p,.cr < -) . -
r 

If X and Y a r e a.u.s. and. Y* has the Radon^Nikodym- property-and 

the approximation property then the tensor-prodAiGt X ®-~Y—is—a.-«--s-. 

( [3 ] ) . The class of a.u.s. spaces is stable by - e •-direct-sum 

( [3 ] ) . 
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