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SOME CONVEXITY PROPERTIES OF MUSIELAK<ORLICZ
SPACES OF BOCHNER TYPE

A.Kaminska

Abstract, It is shown here that if a Banach space X and Musie-
lak-Orlicz space I.(p are both locally uniformly rotund or uniformly
rotund in every direction then the space LL‘,(X) of Bochner type has
the same properties. Moreover criteria for these properties have
been given for a subspace of finite elements E‘P (x).

Introduction, Many authors have been examined the question
whether a geometrical property lifts from a Banach space X to the
Lebesque-Bochner space LP(X). M.Smith in 7] has given a brief sur-
vey of those problem, Similar questions have also been considered
- for Orlicz or Musielak-Orlicz space. H.Hudzik in [4] has been shown
that if X and Musielak-Orlicz space L¢g are both uniformly rotund
then Lq,(x) is also uniformly rotund. N.Herrndorf in [3] has proved
that Bochner-Orlicz space Lq;(x) is locally uniformly rotund iff
both X and L(P have this property. Here we consider two geometrical
properties:local uniform rotundity (LUR) and uniform rotundity in
every direction (URED),in the context of Musielak-Orlicz spaces of
vector functions., In paper [5] there have been presented criteria
for the above properties in Musielak-Orlicz spaces of scalar fun-
ctions L(p ,expressed in terms of function P . Here it is shown
that Musielak-Orlicz space L(P(X) of Bochner type is LUR (URED) iff
both X and L‘P are LUR(URED) .Similar results are also shown for
the subspace of finite elements E¢(x) of the space LV(X)' Subspa-
ces of this kind play an important role in the theory of spaces of
Orlicz type.

Since the paper is a direct continuation and generalization of
results from [5] , we refer a reader to those paper for basic nota-
tions and definitions as well as for some Lemmas and Theorems. Now,
we give some additional notations and definitions., For u,ve R,
let us denote max(u,v) = uvv, min(u,v) = uAv, The Musielak-Orlicz

This paper is in final form and no version of it will be submitta
ed for publication elsewhere,
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space LQ‘,(X) of Bochner type is a family of all strongly measurable
functions x : T— X such that Itp (rx) = § (.P(A\lx(t)ll ,t)d/u,<<n

for some A >0 dependent on x, where X is a Banach space. The space
L‘P(X) is equipped with Luxemburg norm. The subspace of finite ele-
ments E‘p (X) is a family of all strongly measurable functions x
such that ICP(A x) < ® for every A > 0. Suppose in the following
that measure W 1s G -finite, glere exists an increasing seauence

(7,) such that w?,< o, w(T~ 1L_j1Ti) = 0 and

(0.1) :ggi(p@;,t) < o

for every u eR+ and i € N, Indeed, let (Ai) be a pgequence of pair-
wise disjoint sets such that wA;< @ and /u.(T ~ LJ1A1) = 0. Let
i-

®
i . i i
sl - {ten s p(nt)g m}. Since mL_j1Anm = Ay, (AN AL )= 0
as m—>® . Therefore, for every € >0 and n €N there exists m,
: i n X1
such that w(A,™ A < £/2". Hence A \/.'s,} A <
, (1 nmn) /"’( i . nmn)
ﬁ 1 1 R,
< A, NA < £ . Denoting B; = ( \A we have
N n= (1 umn) € ne ann

:zgi cp(n,t) < ® for every i,n¢ N, Let us take a sequence (Bjéj)ij
€

where (£J) is a sequence tending to zero. So,we have

@ 1

T~ B < A, N B - 0,
p( Y jk_-{ aj) Py CH }_J, ea) _

D 1 i -
because /,‘,(A1 ~ U B J) < plag > B£j < &y for all JGN,

Finally, we transform the sequence (Bé ):t-'j into (Ti) with desi-
J ’

red properties.
In virtve of (0.7) it is seen that Eq,(x) is always nonempty, be-
cause all characteristic functions of Ti belong to E(p « Condition
(0.1) has appeared in [2] ,in the context of decomposability of
the subspace of finite elements, but the author has not given
a prnof., '

For a Banach space (X, I II) we define the following moduli
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of rotundity-

5(y,£) =inf {1 - l(x +y)/2ll = izl g1, Jix-yll3e)
for |lyll= 1, and
S(€,22) = inf {1 = l((x +2z) + x)/2|l: |Ix]|| €1, |Ix +Az[I< 1,
Hazli»e )

for z + 0. The space (X, n II) is LUR(URED) iff S(y, i)) 0

(S(&, >z) > 0) ‘for every € >0 and every y belonging to a unit

sphere of X (every 0 ¢z ex) L1 . If X is separable and y strongly
measurable function then compositions S(y(t), £),3(E,» vy () are

measurable functions. It is trivial to check that Theorem 0.2,

Lemmas 0.3,0.4,4 in [ 5] are also true for the space L(P('X) of Boch-
ner type. :

Por arbitrary x,y€ X we have ||x + yll v IiIxll Y Ux % ¥} >
Nyl = fixy > wy = (Nx + 31l v (Ixi]) « It implies that
(0.2) llx +yll viixn > Uyl /2

for every x,y € X. This simple inequality plays a similar role to
Lemma 2 in [5] . :

Results, ,
- 1. lemma, If ¢p doesn’t satisfy condition A, then there exi-
sts a sequence (yk) c Eq, such that I‘P(yk)—>0 and ||y ”‘P—”

. : ®
and /u,(T N kk-J1 supp yk) > o.

Proof. It is easily seen that condition A2 is fulfilled iff
;hn(t) dj < @ for some n eN, where

h (t) - 313{{({7((1 + %)u,t) - Zn?(u,t)}.
Let (ui) be the set of rational numbers and

Bomg ={t€, = @((1 + Duy,t) > 2@, t)) o
where (Tm) is a sequence from condition (0.1). Putting
{xjn(t)yj - {ui XA 1(t)}m'i and
gft) = sup {@((1 + Dut) s @((1 + PJut) 32 q(ut) ]
we get .
Ba(t) = mwp ((1+ Py, (8it)

= = @ ((1+ Dxp(8),0),

It is evident, that x;jne E¢ for each J,neN. If condition A2
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is not satisfied then
ST gn(t)d/u, - ®
for each n € N ,because gn(t) 3 h (t)- Putting
gy (t) = 1;133:(1 (.P((1 + %)xdn(t),t) we have gnl(t) t g,(t) as

1 - ® and hence

(1.1) § Emem®in > 2"

for e €N and  U(m) e, Denoti t) = max (t
or every n nd some 1(n) ng x,(t) Lo Xjn ),
we have .

En1(n)®) = @ ((1 + 1)y 5 (t)rt) .

We find an increasing subsequence (nk)ciﬂ and a sequence (Ak) of
. pairwise disjoint sets such that

. fne
(1.2) Fi‘kq, (1 + Ek)xnkCt),t)d,u.p 1

for each k€ N, by condition (1.1) and Lemma 1.7,3 in [6]. We can
take a sequence (Ak) in such a way that ,w(ﬂ.‘ ~ UAk ) > 0.-Moreo-
ver, we get

C(1.3) @((1 % ) R (0),8) > 2P(F,(8),t) .

for each n €N, by definition of sets A ., and functions in o Let
us put ;. .

(t) = xﬁf(t) XAK.( ) -
It is evident that Y€ Eq, .‘Moreover

T (n) = {kv(ink(t)-t) ap
< /2% L1y 3
1/2 S ¢ ((1 nk) xnk(t),t)d./u,

= 1/2nk—_>o
as ko, by (1.3) and (1.2) . But I ((1 + -)yk)-

"§ ‘P((1 + Ek) xnk(t),t)d/w =1 for each ke N. Hence

Wyl = 1/(1 + (1/n)) — 1, ©
as k—» @ . This ends the proof, because |Jsupp y, = U4, .
' k=1 k=1

2.,Lemma, If X is locally vniformly rotund, (p( t) is stri-
ctly convex for t €T \T o Where T  1is some null set,then for every
g, «, oC2€(0 ®), pe(O 1) there exists a measurable function
q : T—(0,1) such that

@@ + v)/2llt) < (1 - qct)) (t.p(llull.t) + eIV, t))/2
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for all teT \To and all u,v&€X satisfying the following conditions
Mu=vi>euivivi), @(uiviuvi,t)eld,, <],
v4oand §(v/ v, £/2) > p.
Proof, Let 81 be some fixed positive number such that
(2.1) €4 € p/C2-p) A D/(14p) A E/2 .

I flal) - Nl | 2 51(Hull v llvl]) then applying Lemma 1
of [5] we get the desired inequality with some function -.
gy ¢ 2—(0,1). '

Suppose then [flull = Ilvil| < €, (a1l v Uvll). We consider

-two cases. If Iful] €£llvil then

(e dNv< Hullg vl and flu/Hvil = v/ vl 2 €,
-by- our-assumptions. Hence and by the local uniform rotundity eof X
-and by (2.1) it holds
(2.2) N(u + v)/211< (1 - 3(v/uvi ,€)) livll

@ =p)/0 - €) (il + aviy2
€ (0 - p)/Q-- p/C2-p))(llull + Hvh)/2-
- (1 = p/2) (il + Nvily2. -
-I£ |lu]l> llvll. then we have
(2.3) (- €N Null € Nvll < Mull.

Moreover :
& Sllu/llullt =v/Nullll € Hu/lall = v/livll il + (1 - UVH/HHH)
SHu/llull =v/livi) Il + /2,
by the assumption llu = vII> € (lluJl vIlivll) and inequalities
(2.1) and (2.3). Then || u/2 Null + v/2lvilll & 1 - S(v/lvil, € /2).
Hence and by (2.4) and (2.1) we obtaln
7 v G o+ w20 = (ai/ivi) w/2ian + v/2iv T -
Sllu/2 nult + v/2uvill  +« G/2)Coual/iivii - 1)
€1-3@/lvu, €/2) + €,/2(1-€ )
€1 -p+(p/Q+p))/2(- p/(1+p))
=1 = p/2,
since the function £1r—»£1/2(1 -t 1) is nondecreasing. Hence
and by [{ull > JIvil we get inequality (2.2) immediately. Now,it is
enough to apply the convexity ofc.p , to get thesis of the lemma
with the function q(t) = min(q1 (t),p/2) .
3.,lemma, If X is uniformly rotund in every direction, @(*,t)
is strictly convex for teT~T°, where T_is some null set, then
for every €, o£qy G,€(0,®), Pe(0,1) there exists a measurable
function q: T — (0,1) such that
@(llu + v/211,t) € (1 - a@EN(@u + vil,t) + @(llull,t))2
for all teT \To and every u,v €X satisfying the following condi-
tions
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vt 2e(llv + ull vIIuH). @(liv + ullv)ull,t) e[, <,],
v ¢0and S(¢€,2v) >
Proof, et &, = p/(z-p). If [ lv o+ ull=Nul]3e(llv + ull viull)
- then by Lemma 1 of [5] we get immediately the desired inequality
with some function q, dependent on P, 061, o,
Let now [llv + ull - lull] € € 1 (v + ull vilull). It implies
the following inequality
(.1) (@ - € ) (v +ullvilull) ¢ llv +ull allull.
Without loss of generality we can put ||v + ulivilull > 0. Since
Uyl /Qlv +ullv itu )€, (ull/liv +ullv llul)g 1,
lu + vII /(v + ull v llull) €1 and by definition of the modulus
3(e,»>v) we get :
(3:2) |2 + )+ w)/21} < 0 - 3(e,»v) (v +ull vitull) .
But »
v + wllvilul € 1/0 =€) Cliv +ull viluli+ lIv + ull atluf)2
= 1/(1 = &,) (il + nu+vil)/z,
by inequality (3.1). Taking into consideration in (3.2) that
3(e,+v) »p and €, = p/(2-p) we get flu +v/2|| <
(1 - p/2)Y(ly + |v + ull) /2 . Applying the convexity of (P
we obtain the thesis with q(t) = min(g,(t), p/2). ,
Proposition, If (p doesn’t fulfil condition A > then E @ is
not locally uniformly rotund and it is not uniformly rotund in eve-
ry direction,
Proof, Iet (y,) < Eq, be a sequence gom Lemma 1 i.e.
W(yﬂ)—» 0 and |ly,llp =1 and (T N L.j1 supp yn) > 0, There

exists a set A of positive measure such that AC(T N U supp y )n'.l'

for some me N, We have Ip(uy,)< ® for each u30, by (0.1) .
Since a function u—)I(p(u XA) is: convex and finite, it is con-
tinous and lji-j;l;) Iq,(u X4 )= @ . Therefore there exist u,,u, and u,

such that .
I(p(u1 'XA)*1' I(p(uzxA)"1/2' I(P<unXA)‘1 - ‘I(P(yn)-
Let us put

2(8) = ug Xu(0) 2(t) = uy Y, (8)

Z1n(t) - x1<t) + y t) , zzn(t') = y (t).
The above all functions belong to E¢ , by (0.1) . We have I (z )u
-1 and Igp(z,) = 1/2 , Hence llz,llp=1 and Il z 2 llp €1. We have
also I (z )-1 Ip(2,,)—0 a.nd I2zyn 11 —>1. Since
|'2_1(t) - zm(t)l >y, )1, 80 lzg = 24, I 2117, Hp— 1. Hove-
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ver H(z + zm)/zjl? I‘P ((z +2,)/2) = I(P(((u1 + un)/z)'x A)*
Iq,(yn/z) > I‘P(un'x AY=1- It?(yn)-—ﬂ, as n—® ., This shows:

that Eq, is not locally uniformly rotund.
Taking into consideration z, and Zo, We obtain Iq,(zz + 2,5, ) -

I‘P(ZZ) + I‘p(ZZn) < 1 for sufficiently large n. Hence ||z, + zZn“(P
£ 1. But, the inequality lzz(t)/z + zgn(t)l"(1/2)|22(t)] +
IZZn(t)l [ 25, ()] implies |[z/2 + 2, ”CP > Il 2, ||<P—>1, as

n—s o, It shows that Eq) is not uniformly rotund in every direc-
tion and ends the proof,
_ THeorem., If X is separable then the following conditions are
equivalent
(1 Lq,(x) is LUR (URED) ,.
(2) X and Ly are LUR (URED),
(3) E¢(X) is LUR (URED) ,
(4) X and E¢ are LUR (URED),
(5) the function (p is strictly convex and satisfies condition A

and X is LUR (URED) .

'Proof, Implications (1)—>(2) and (3) —>(4) are immediate,be-
cause X and L or E¢p are isometric subspaces of L (x) or E(p(x)
respectively., The implication (1)—(3) is trivial, Implications
(2) —(5) and (4)—(5) are results of Proposition and Theorem 0.1
in [5] , because L(p - E‘P if <« satisfies condition Az. So it is:
enough to prove that (5) implies (1) . Some ideas of the proof are
included in [5] , but for clarity we present the investigation on
the whole, First, we will show that L(p(x) is locally uniformly ro- -
tund. Let € >0 and ye I‘CPCX) be such that I‘p(y) = 1, Consider the
set of all x for which I(P(x) = 1 and I‘P(x = ¥) 2 € +By condition
A there exist k> 0 and a nonnegative function h,such that

(1) STh(t)dp. <(1/16)€ and @ (2u,t) ¢k P(u,t) + h(t)

for all ueR and a.e.te€T., We find also constants ¢4»C, Such that
¢, > ¢y > 1 and '

(2) Scp(z Iy ¢, t)dp < (1/32k)e where
T -{teT ICIOTRPY: eyv @ RUr®IL,t) > ey
and

(3)  cqle, < (1/32) CE/x) /(x + (1/16)¢E).
Put .
r, o= {ter: @(2lx@)ll,t)>c, y
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Denoting T (x) = T \('l‘1 UTX) we have
r(x) = Lter: 1/c, < @Uy(t),8) A @(2Ny®I,t)< ey N

fteT : @(2 Nxt)N,t) €c, Y.
Supposing that I‘P((x - ) Xp (x)) < (3/4)£ we have

‘P (x - y)xT v ) >(1/4)£ by the assumption Iq,(x -y) 3
We have also

(4) TpUtp yr) < S (P(lly(t)“ tdam + S(p(ny(t)ll t)dw

< 1/,,(53 ~T) o+ (1/32k) €
<(eq/cy) S @ (2 Ix@I,k)dp + 1/32K

£ (e, /cz)(kI‘P(x) + S h(t)dw) + (1/32k) €

£(c /02)(k + (1/16)2) + (1/32x) €
<(1/16k)g ,
by (1), (2) and (3) . Therefore

£/4 <Iy((x - Y)'Xm uT, ) £ (k/2)(Tp (x Xr, v )+ Icp(YXT v ))*
g h(t)dm < (k/2)1q;(x Xrur )* (3/32)£ .
Herice Ig(x Xz, u1 )>(5/16k) € . This fact joined with (4) gives
X .
an inequality I(P(y"x To(x)) - I(p(x X To(x)) >(1/4x) € . Now,

applying Lemma 0.4 from [5] there exists a positive number of de=
pendent only on ¢ ,k such that

(5) I(p((X-y)xT(x))

for every considered x. Denote V¥ (A) - Iq) ((x - y) 'XA(\T (x))
These set functions satisfy assumptions of Lemma 3 in _[5] , 1f we
put x in place of T . Indeed, V_(4) <(1/2) I‘P(Zx XAnmo(x))*
(1/2)1¢(2y XAnTo(x)) £((cqy + c,)/2)pA. It implies that

V,(A) € € if mA < 2€/(cy + c,) . Moreover /4.(’.!.‘\1‘1) < o and
VX(T1) = 0. Putting T¢ = T~\T, we showed the first assumption

of the lemma. *“The second assumption is obvious by [5] .Therefore,

taking the function’ J(y(t)/ NyCt)ll, o6 /16) as q(t) in this lemma,
there exists p> 0 such that

(6) Iy ((x-y)x%(x)”.);(:/:t)oc.

where To= fteT : §(y(t) /Uy, < /16) 2 9],
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Now, let q(t) be the function from Lemma 2 chosen for oC/16, 1/c1,
Coy P in place of E, 001, oc2, P. Applying again Lemma 3 in the
context of (6) there exists a constant q e (0,1) such that

- ' /2
(7) (p«x y)xTo(x)nTonTo')/ /"
where T: = {teT : qt) > q}. Denoting U(x)= To(x)f\ T;(\ T;,'let

T,(x) = {teUk) : ||x(t5 -yl > (C/8) (= v iy )y .
Ir te'l‘z(x) then values x(t) and y(t) satisfy assumptions of
Lemma 2 and so

@Cxt) + y(eN/20,8) < (1 - q) (@Cux(e)n, %) + <p(ny<t)u.t))'2.

Therefore

(8) I(,p((x +¥)/2) 1 - (Q/Z)(I(p(x X o (x)) + I(.p(y X, (x))
If t€U(x) NT,(x) then Q(lIx() - y(t) Il t)< (06/8)(<P(llx(t)|l t)
+ ¢(liy(®) ”.t)). Hence I(P((x - y)xU(x) \Tzcx))‘ «/4 . So\, in
virtue of (7) we have Ip((x-7y) XTZCX)) > o¢/4 . Now, we find

a constant k, and a function h, such that

_ST_h1 (t)dm < oc/8 end @(2u,t) €k @ (u,t) + h1(t) .

Then Tg(x Xmxy) * 1@ Xmy(x) )3 (/e p((x - )X, x)
g n,(t)ap ) 2 (2/k)) (C/4 - £/8)= oG/4k, . Hence and by (8)
we get the following estimation

(9) ((x +y)/2) £ 1 - qC/8k, ,

which ends the proof in virtue of Lemma 0.3 in [5] . _

Now, we will show that L¢(X) is uniformly rotund in every
direction., Let z€L,p , 2 ¥ O and I(P(x)<1 and I‘p(x +z)g 1.
Assumptions of Lemma 4 in [5] are satisfied with functions z and
x. Then, there exist constants c,d, o¢ >0 such that

To(z X (xy ) >oC
for arbitrary x satisfying I‘P(x) < 1, where

Wo(x) = W,nW,,
W, ={ter: 1/c < @(N=z(t)N/2,t) and cp(z lz¢t) I, t)< cy,
W =fter: ¢Ix@)I,t)< dY.

- Since z(t) ¥ O for every teW,, (e, > z(t)) > 0 for tew (x).
Moreover }A-W,' < ®, Applying Lemma 3 in [5] for set mappings
V()= I‘P(z X Wo(x)nA) and the function J (¢, » z(t)),there

exists p e(0,1) such that
To(z X (x)n W' )>(3/4) <,
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where W'= {t eT : d(e,»z(®))> pB. Let q(t) be a function from
Lemma 3 chosen for constants o/8, 1/c, (c+d)/2, p taken as E, 061,
oC 59 Pe Applying again Lemma 3 in [5] we obtain
@'Xw(x)AWAw")>“72'

where W" = {te’l‘ : q(t)>q} for some q €(0,1) . Let

Wp(x) = {tew(x) : Ha®N > (x/8) (M2 () + x(0)Il v I1x (M)
where W(x) - W (x)anw If tewzfx) then values of z(t) and x(t)
satisfy assumptlons of Lemma 3 with constants /8, 1/c,(c+d)/2,p.
Indeed 1/c < Q(Uz¢t)N/2,t) € P(lz(t) + x@) I v IIx@®)l,t) €
(c + d)/2 for teW (x), by the inequality (0.2). Therefore

@ (lz(t) + x(8/211,8) <0 - @2 « x®U,t)+

P(llxw ,t))/z for t ewz(x). In the sequel,proceeding simi-
larly as in the previous proof beginning from inequality (8) , we
get an estimation of the type (9) . So, in virtue of Lemma 0,3 in
[5], the proof is finished.

Remark. The separability of X is used only for measurability
of compositions & (y(t), €) and S(€,»y(®)) . The above theorem
is a generalization of some results from [3] and [8] .
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