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REMARKS ON POWERS OF, LATTICES

A.Btaszezyk

A cardinal B8 is called an w -power if Bx° = B, A well known re-
sult of R.S.Pierce [7] says that the power of every infinite com-
plete Boolean algebra is an co=-power. Subsequently J.D.Monk and.
P.R.Sparks [6] and W.W.Comfort and A.H.Hager [2] have shown that
the same is valid for G-complete Boolean algebras. This result
was improved by S.Koppelberg [4] ; she has proved that it holds
for weakly- G -complete Boolean algebras. Recently E.K. van Douwen
and H.-X.Zhou [3] have obtained a topological theorem which 1is
closely related to these results. They have proved that for every
compact Hausdorff space X, the power of the lattice L(X) = {IntclUu
: U is a cozero-set in X} is an w-power. Note, that the family of
all regular-open subsets of a topological space X forms a éornplete
Boolean algebra containing L(X) as an upward G-complete sublat-
tice, 1.e. L(X) is closed under suprema of countable subsets., This
leads to a natural question (see [3] ) : which lattices have power
being co-power ? Concerning this question I have obtained in E1]
the following results :

Theorem 1. There exists an upward G-complete sublattice L of
a complete Boolean algebra such that |L| is not co-power.

In the next result B® stands for the completion of an algebra B
and the lnequality u<«w means that u,w ¢B® and for every ultrafil-
ter FCB such that xAu # O for every x ¢F, there exists y «F such
that ygw. )

- Theorem 2, If B is an infinite Boolean algebra and L is an up-
ward G-complete sublattice of B® such that B<L<B® and for every
u el there exists {u, : n<w}c L such that inf{uAu, : n<w} =
=0, uvu =1 and u, 4<<u, for every n<cw , then Ll is an
We-power, .

The next result shows that the assumption that L is upward G-
-complete and B< L < B® does not suffices for proving in ZFC that
Ll s an w-power. Nomely, we have
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Theorem 3., If 2 =0 e
an infinite Boolean algebra B and an upward G-complete sublattice
L of B® such that B<cLcB® and | Llis not L=-power.

The aim of this note is to show that under the assumption of
generalized continuum hypothesis (GCH) the situation is quite dif-
ferent. To do this I shall adapt an idea due to S.Koppelberg [51] .

Theorem 4. Assume GCH. If B is an infinite Boolean algebra and
L is an upward G-complete sublattice of B® such that BcLcB® ’
then |L| is an -power,

- Proof. Let 8 = |B|> c5 . Since IBcl 2‘13| =s? , the power of
L equals either 8 or B"’ . Clearly, we may assume that |L| = 8 and
8 is a limit cardinal, i.e. B = sup{B}. : }<cf(8)}, where B3 <
<B7<B for every {<7<cf(B). If cf(8)> K , then by Tarski’s for-
mula, we get (,
870 = <=mpus;+ y<er@h O - supt (87) Mo, g<
<ef(B8)} =

So, it remains to show that c:f(B)> /\’o. Assume the contrary : 8 =
= sup{B8, : n<ce}, where B < B8, < B for every n<k<co. Let L = tuys
3 < 8% and L = LAB, , where B is a subalgebra of B¢ generated
by the set {uz : < B 3. Then every L 1s a sublattice of L and
it has the following property H

(1) 1if uel, and -uc¢l, then -u €L,
Now, for every ueL we define _

i(u) =min {1 uel; ¥ .

Since L =u{_Ln t n<wi}, the index i(u) is well defined for every
uéeL, Condition (1) follows that i(u) = i(-u) for every ueB ;.
recall that BCL. We define by induction a sequence {z, : mn<c]}cC
C B such that

(2) o< Zpeq < 2y TOr every n<ow ,

(3) n<p implies :I.(zn)(i(zp),

(4) for every n<cw , IBtz | =8,
where BMz ={xe¢B : X$ 2} . Assume ZoseeesZ, aYe Just defined.
Since lI‘i(n)‘ < Bi(n)<8 and |Brz | =8, there exists x ¢ B Z,
such that x eLi(z ) Since the sequence {L st n<wi is 1ncreasin8
we get

4 for every n<co then there exists

0<x<z, and 1(z,) < 1(x).
If|Brx| =8, we set 2, , = x. If not, then I{BFz -x| = B and we
set z, .4 = z,-X. Since i(u) = i1(-u) for every ueB amnd -x = -z, v
V(zn-x), 1(z,,4) = 1(I)>1(zn). Now, for every n<< we set

Up = 2n " Zpet e
The sequence {u, : n<co} consists of non-zero disjoint- elements
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of B and, by the condition (3), i(un) = 1(z,,4) for every n<c .
Hence, .the set N = {1(w;) : n<c} is infinite. There exist infi-
nite pairwise disjoint sets N, such that N = U{N, : k<w } .
Since the lattice L 1s upward G-complete, for every k< <o there
exists an element 8 € L such that

8, = sup {u, 3 i(un)eNk} o
The set {sk st k<w} consists of disjoint elements and for every
k < <o there exlsts W (k) < S such that

(5) i(%(k)) > max { k, i(Sk) 3,

which follows from the fact that every set Ny contains arbitrary
large indexes. Now, we set

w = sup [un(k) t k<ol .
Note that was, = U (x)° Hence, by condition (5), i(w)a'i(un(k))
for every k<co . Then, again by the condition (5), i(w)=>k for
every k<c» , which is absurd. The proof is complete.
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