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NATURAL OPERATIONS WITH SECOND ORDER JETS 

Ivan Kolář - Gabriela Vosmanská 

Adopting the categorical point of view, we observe that several 

differential geometric operations can be interpreted as natural 

transformations of the corresponding functors. To preserve the usual 

geometrical terminology, we also say that such a natural transforma­

tion is a natural operation on the geometric objects in question. In 

the present paper we use such a systematic approach to determine all 

natural operations with the second order holonomic, semi-holonomic 

and non-holonomic jets, [ 1] . Our starting point have been two geo­

metric operations with the semi-holonomic 2-jets: the canonical 

involution defined by Pradines, [5], and the difference tensor in­

troduced by the first author, [3].Interpreting the construction of 

jets as a functor on the product categorv Mn x M, we first deduce 

analytically that all natural transformations of the semi-holonomic 

second order jet functor into itself are generated by those two op­

erations in a simple way. Our analytical procedure yields that the 

only natural operations on the classical (i.e. holonomic) 2-jets are 

the identity and the so-called contraction, which transforms every 

2-jet into the 2-jet of the related constant map. Then we determine 

all natural transformations of the non-holonomic second order jet 

functor into itself. An interesting consequence of the latter result 

is that there is no natural holonomization of the non-holonomic 

2-jets except contraction. - All manifolds and maps are assumed to 

be infinitely differentiable. 

1. Given an arbitrary fibred manifold Y - X, its first prolon­

gation J Y means the space of all 1-jets of the local sections of Y. 

The first prolongation of the fibred manifold J Y - X is called the 
~2 1 1 2 

second non-holonomic prolongation J Y = J (J Y), [1] . Let J Y be the 
second (holonomic) prolongation of Y, i.e. the space of all 2-jets 

"This paper is in final form and no version of it will be submitted for 
publication elsewhere11. 
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2 ~2 
of the local sections of Y. We have a canonical inclusion J Y C J y, 
2 1 1 ' 

j s •* j (j s) for every local section s of Y and every x £ X. Let 
x , x ~2 1 
3 : J Y - Y and &1 : J Y - J Y be the target jet projections. The 
map 3 : J1Y - Y is extended into J18 : J2Y - J1Y, J13(j1s) = 

1 ~? i x 

= j (Bos). This is another projection of J Y into J--Y. The second 
X ~2 ~2 

semiholonomic prolongation J Y is the subset of all A £ J Y' satis-
1 2 — 2 

fying 3, (A) = J 3(A). Obviously, it holds J Y C j y. 
1 2 

Having two manifolds M, N, the space J (M,N) of all 2-jets of M 

into N coincides with the second holonomic prolongation of the prod­

uct fibred manifold M x N - M. The second non-holonomic or semi-
~2 -holonomic prolongation, of W'x N - M is said to be the space J (M,N) 

—2 
of all non-holonomic 2-jets of M into N or the space J (M,N) of all 
semi-holonomic 2-jets of M into N, respectively. In the first order, 
the identification JY(M,N) « Hom(T M, T N) of the set of all 1-jets 

x y *x y 
of M into N with source x and target y with the set of all linear 
maps of the tangent space T M into T N is well known. In the second 

x y 
order, if we consider the iterated tangent bundles TTM and TTN, 

~2 
everv A € j (M,N) y can be interpreted as a map uA : TT M -> TT N as x y • , f r x 1 y 

follows. We have A = jxs, where s is a local section of J (M,N) - M. 

If we interpret every s(u) as a map S : T M - TN, we obtain a local 
map S of TM into TN. Then we define uA as the restriction of the 

"̂ 2 
tangent map TS to TTXM. If B G

 J y ^ N ' p ) z
 i s another non-holonomic 

2-jet, the composition B o A £ D^CMjP) can be defined by 
(1) p(B o A) = (uB) o (yA) 

The correctness of this formula follows from the coordinate expres­

sions below. 

If x or y are some local coordinates on M or N, then the 

induced coordinates on J (M,N) will be denoted by ap = 3yp/ax . 
1 P 

Every local section of J (M,N) - M is given by some functions y (x), 

a?Cx), so that the induced coordinates on J (M,N) are aPi = 9yp/9x , 

aP. = daf/dx\ One finds easily that a jet A = (x1,yP,aP,agi,aP.) is 
semi-holonomic, if and only if ap = a p , and a holonomic jet is 

further characterized by ap = a-?.. 
i y ij Di i 

Let E, be the additional coordinates on TM corresponding to x 

and dx , d£ be the induced coordinates on TTM, A local section 

y P(x), a^(x) of J (M,N) determines a local map yp = yP(x), nP = 

= a ^ x ) ^ 1 of TM into TN. Evaluatina the tangent map, we find that 

the coordinate expression of uA : TT M - TT N is 
^ x y 
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(2) nP = a^S dyP = a^.dx1, dnP = aj^dx* + ajd?1 

If we consider yB 

(3) e = bsnp, dzs = bs
pdy

p, dCs = bsqn
pdy^ + bsdnp 

and compose (2) with (3), we verify that ( 1 ) is a correct formula. 
s s s 

In the same time, we obtain the coordinates c. , c ., c. . of B o A in 

the form 

( 4 ) cs = bsa?, cs. = b s aP., cs. = b s aPa^. + bsa?. 
l p i oi op oi 2.J pq l oj p 13 

In particular, this proves that our definition of the composition 

of the non-holonomic 2-jets coincides with that one introduced by 

Ehresmann, [ 1] . Clearly, the composition of two semi-holonomic or 

holonomic jets is semi-holonomic or holonomic, respectively. 

«--2 —2 
2. Pradines, [5], has introduced an involutory map i : J - J 

as follows. Consider the canonical involution of the second tangent 

bundle i : TT M - TT M or i : TT N - TT N. By [ 2] , for every 
x x x y y y 

—2 —'2 
A G J (M,N) there exists a unique iA £ J (M,N) satisfying u(iA) = x ' y ^ x ' y J * 
= i o yA o i . The coordinate effect of i consists in the exchange 

y x -j 
of both subscripts of a^•. Using the well-known fact that J Y — Y 

is an affine bundle for every fibred manifold Y - X, we find easily 
y 1 

that 1 (M,N) — J (M,N) is an affine bundle, the associated vector 
bundle of which is TN ® T*M ® T*M. Hence for every t G R we can 
intrinsically define 

(5) tA + (1 - t)iA e J2(M,N) 
x ' y 

On the other hand, two points A and iA of the same affine space 
• 

determine a vector (iA)A of the associated vector space. Its coordi­

nate expression is a ^ - a??if so that it belongs into T N ® 

® A T*M C T N ® T*M ® T*M. Hence for every k e R we obtain 

,2„ (6) k(iA)A e T N ® AZT*M 
y x 

For k - 1/2, we get the difference tensor of A introduced by the 

first author, [3]. Further, the kernel of the projection 

B-, : J2(M,N)V - J^(M,N)V is also identified with T N <8> T*M ® T*M. ± x y x y y 
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Hence (6) can be interpreted as,a map of J2(M,N) into itself. Thus, 

/ r x y 

(5) and (6) are two one-parameter families of natural operations 

with semi-holonomic 2-jets. 

3. Let M be the category of all manifolds and all smooth maps 

and M be the category of n-dimensional manifolds and their•local 

diffeomorphisms. We can consider J as a functor on the product cat­

egory M x M transforming every pair of manifolds (M,N) into J (M,N) 

and every local diffeomorphism f : M-̂  — M2 and every smooth map 

g : Nx - N2 into J
2(f,g) : J 2 ^ , ^ ) - J2(M2,N2) defined by 

(7) J2(f,g)(A) = (j2g) o A c jf(x)(f"
1) 

~2 —1 
for every A € J (M,N) , where the inverse diffeomorphism f is 

y -2 2 
taken locally. The .same formula defines J or J as a functor on 
M x M. If we consider a natural transformation t of any two of 
n 

these functors, we always assume that every t» N is a projectable 

map over the identity of M x N. 

Proposition 1. All natural tuanhonmattont* 3 ~* 3 ^onm tkz tvoo 
ond-paxamntzn.* £amlllzA (5) and (6). 

2 
Proof. Consider first the subcategory M x M C M x M. Let L 

j . n m n n 
or L m be the group of all invertible 2-jets on R

nor Rm with source and 
target 0 and L = J (Rn,Rm) . Similarly to Palais and Ternq, [4], 

n, m o o 2 2 2 
(7) induces the following left action of the group L x L on L 

^ * * n m n,m 

(8) 

cT = bPC гaт 
i q Э -L 

~D - , p q r k l , , p Q k l , , p q k 
c-. . - b^ c;cŕa.a. + b^cľ^a.a. + b^cľ^a. . , 13 qr k l 1 3 q k£ 1 3 q k 13 

where (b°. b^ ) are the coordinates of an element b £ L_ and, to 
4 H*- ^ ^ m 

simplify the evaluations, (a., a., ) are the coordinates ot the in-
9 3 3^ i r\ 

verse element of an a € L . In particular, a., and b p are symmetric 
n ' 3k qr 

in both subscripts, while c^. are arbitrary quantities. Bv natural-
-O _2 --2 

ity, the restriction of every natural transformation J - J to 
2 2 2 2 

Ln,m i s a n Ln x L
m~

ecIuivariant map of LR m into itself. By definit­
ion, such a map f = (fP ff. ) : L2

 m - l? satisfies 
^ i ij n,m n,m 

(9> ^^(o^cj).} - f ^ c H - »p
qA'hH + *PAA4 * 
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(10) bPrf^(c1,c2)f
r(c1,c2)a^ + bPf^(Cl,c2)a

kaj + 

+ bpfq(c c )ak - fP (bpcqaj b P cqcraka£ + + bqfkCCl'C2;aij " 1J q°jai' qrCkC£aiaj + 

. , p q k I , , p ci k v 
+ b^c^-a.a. + b*c,-a. .) q kl l J q k i ] 

where we use c- = c?, c9 = c?. as abbreviation. To solve (9) and 
-1 2 2 

(10), we shall discuss certain subgroups in L x L . We have injec­
tions L1 - L2, (a*) r* (a*,0) and L1 - L2, (bp) - (bp,0). Consider 

n n J J, m m . q , q D D 
first the homotheties of Lz, i.e. put a± = k6+, a k = 0, b£ = 6£, 

n - J J J J s . q q 
b p = 0 . Then (9) yields 
qr 

(11) kfp(c1,c2) = f
p(kc1,k

2c2) 

Hence f? are globally defined smooth functions homogeneous of degree 

1 in c and of degree 1/2 in c«, so that fp must be linear in c 

and independent on c , see e.g. [ 2] . Using the same substitution in 

(10), we find 

(12) k2fP
j(c1,c2) = f

P
j(kc1,k

2c2) 

If we consider the homotheties of Lm, i.e. if we put a.- = 6../ â  

= 0, b P = k6p, b P = 0, we obtain ' q q qr ' 

(13) kfP
j(c1,c2) = f^Uc-^kc^ 

By homogeneity, (12) and (13) imply that f?. must be independent on 

c, and linear in c . 

Consider now the subgroup Lx x L C L X L . Then (9) implies 
1 * n m n m ~ 

that fp represent a linear L x L-i-equivariant map of R ® R into 

itself. It is easy to find that every such a map is of the form 

(14) c p = kcP, k G R. 

Analogously, fP. represent a linear Ln x L-equivariant map of R
n ® 

R ® R into itself. A simple result by Vadovifiova* is, [ 6] , that 

every such a map is of the form 

(15) cp = acp. + bcp , a,b e R. 

iD iD Di 
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•2 - T.l Consider further the kernels of the jet projections L -*• L , 
*? i i n n 

and L •* L , which are characterized by a. = 6*, b P = 6 P. Then (10) 

yields 

(16) k 2b p c?cr + kc pa k. = (a + b)bp c?cr + (a + b)c pa k. 
qr l 3 k 13 qr 1 3 k i] 

2 2 
This implies k = a + b, k = a + b, so that k = k and we have two 
possibilities k = 1 or k = 0. In first case, we obtain 

(17) c? = c?, c?. = tc?. + (1 - t)c?. 
1 1 13 13 Di 

which is the coordinate expression of (5). In the second case, we 

get 

(18) c? = 0, c?. = k(c?. - c?. ) 
1 iJ ID D 1 

which is the coordinate expression of (6). 

For the whole category M x M we have one of the transforma­

tions (5) and (6) on each subcategory M x M for every inteqer m. 

Taking into account the canonical injection i : R -* R , 
—2 

x ^ (x,0) t our natural tranformations must commute with J (id,i) : 

J 2(R n,R m) - J 2(R n,R m + k) for all k. This implies directly that we 

have the same transformation from (5) or (6) for all m. This 

completes the proof of Proposition 1. 
We remark that we have also determined all natural transforma-

2 
tions of the holonomic second order functor J into itself. The 

subspace J (M,N) C j (M,N) being characterized by c?^ = c?^, we can 

add this symmetry condition at the very end of the previous consid­

eration. Then (17) is reduced to the identity and (18) represents 

the so-called contraction transforming every 2-jet of M into N with 

source x and target y into the 2-jet at x of the constant map of M 

into y. This proves 
2 2 Corollary 1. Tkt only natural tKanh iohmatio n6 J -*- J a/ie tkt 

identity and tka contraction* 

4. Quite analogously, we can determine all natural transforma-
—2 

tions of the non-holonomic second order jet functor J into itself. 

Consider L 2 = J 2(R n,R m) with coordinates c p cp. , c p , By (-+), 
n,m o ' o « 1'0 oi ^13 

(7) induces the followina left action of L z x L z on Ir 
n m n,m 
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c"p = bpcqa:ï cP = b pc q a3 
ci t,qCjai' coi ^qSj*!' 

185 

с?. = bP c4cr
ffa

ka£ + bPc?,ак
а£ + bPC?a 

k 
ij "qr^k^oÆ^i^j ~q~k£~i~j ~qwk~ij 

By analogous evaluations as in the proof of Proposition 1, which we 

omit here, we deduce 
~2 ~2 

Proposition 2, KZZ natufiaZ tn.ani>loh.matlon& J - J £o/im the 

^oZZowing two fiamtZieA 

(20) cp = fee10, c p . = cp ., 1p , = kcp., k e R, 
4, 4,' 04, 04.' 4-j 4,j' 

(21) ~cp = 0, ~cp , = acp + bcp ., *cp. > = 0, a, 6 € R. 
-C ' 04, 4, 04,' 4.J ' ' 

~2 —2 
If we want to determine all natural transformations J - J , 

we have to require c. = c . identically. This is impossible in (20 ) 

and implies a = b = 0 in (21). This rededuces the following result 

by Vadovicovd, [ 6] . 

Corollary 2. The onZy natuxaZ txan6formation J •* J 16 the 

contraction. 

It is easy to construct geometrically the natural transforma­

tions (20) and ( 2 1 ) . Since 6 : J (M,N) - M x N is a vector bundle, 

J1® : J (M,N) - J (M,N) is also a vector bundle. Clearly, (20) 
expresses the multiplication by a scalar on this vector bundle. 

1 — 2 1 
Further, the zero section of J 3 : J (M,N) — J (M,N) is an injec-

1 ~2 
tion i : J (M,N) - J (M,N). We have two geometric projections $-, , 

JX3 : J2(M,N) -*- J1(M,N) and (21) transforms every A € J2(M,N) into 

the injection i(a3,(A) + bJ 3(A)) of a linear combination of the 

vectors 0 A and J-^B(A) with prescribed coeficients a,b € R. 
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