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NATURAL OPERATIONS WITH SECOND ORDER JETS

Ivan Kol4¥ - Gabriela Vosmanské4.

Adopting the categorical point of view, we observe that several
differential geometric operations can be interpreted as natural
transformations of the corresponding functors. To preserve the usual
geometrical terminology, we also say that such a natural transforma-
tion is a natural operation on the geometric objects in question. In
the present paper we use such a systematic approach to determine all
natural operations with the second order holonomic, semi-holonomic
and non-holonomic jets, [1]. Our starting point have_been two geo-
metric operations with the semi-holonomic 2-jets: the canonical
involution defined by Pradines, [5], and the difference tensor in-
troduced by the first author, [3]. Interpreting the construction of
jets as a functor on the product categorv M, x M, we first deduce
analytically that all natural transformations of the semi-holonomic
second order jet functor into itself are generated by those two op-
erations in a simple way. Our analytical procedure yields that.the
only natural operations on the classical (i,e. holonomic) 2-jets are
the identity and the so-called contraction, which transforms every
2-jet into the 2-jet of the related constant map. Then we determine
all natural transformations of the non-holonomic second order jet
functor into itself. An interesting consequence of the latter result
is that there is no natural holonomization of the non-holonomic
2-jets except contraction. - All manifolds and maps are assumed to
be infinitely differentiable. -

1. Given an arbitrary fibred manifold Y - X, its first prolon-
gation JlY means the space of all l-jets of the local sections of Y,
The first prolongation of the fibred manifold Jly - X is called the
second non-holonomic prolongation EQY = Jl(J1Y), [1] . Let J2Y be the
second' (holonomic) prolongation of Y, i.e, the space of all 2-jets

"This paper is in final form and no version of it will be submitted for
publication elsewhere".
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of the local sections of Y. We have a canonical inclusion J2Y C EZY,
j2s -3 (j s) for every local SeCthn s of Y and every x € X, Let

b4
B : JlY - Y and By ¢ J2Y - JlY be the target jet prOJectlons. The

map B : JlY - Y is extended into JlB : J2Y - J1Y, J 8(3 s) =

= 1(B°s). This is another projection of J2Y into Jly. The second
semlholonomlc orolongatlon JZY is the subset of all A € J2Y satis-
fying B (a) = J B(A)., Obviously, it holds J2Y - JZY.

Hav1nq two manifolds M, N, the space J (M,N) of all 2-jets of M
into N coincides with the second holonomic prolongation of the prod-
uct fibred manifold M x N - M, The second non-holonemic or semi-
-holonomic prolongation of M'x N - M is said to be the space EZ(M,N)
of all non-holonomic 2-jets of M into N or the space EZ(M,N) of all
semi-holonomic 2-jets of M into N, respectively. In the first order,
the identification J)];(M,N)y ~ Hom(T,M, TyN) of the set of all l-jets
of M into N with source x and target y with the set of all linear
maps of the tangent space TxM into TyN is well known, In the second
order, if we consider the iterated tangent bundles TTM and TTN,
every A € Ei(M,N)y canlbe interpreted as a map uA : TTxM - TTyN as
follows. We have A = j s, where s is a local section of J (M,N) - M,
If we interpret every s(u) as a map Su : T M~ TN, we obtain a local
map S of TM into TN. Then we define uA as the restriction of the
tangent map TS to TT,M. If B € 3§(N,P)z is another non-holonomic
2-jet, the composition B o A € Ui(M,P)z can be defined by

(1) u(B o A) = (uB) o (uA)

The correctness of this formula follows from the coordinate expres-

sions below.
7 .
If X or yp are some local coordinates on M or N, then the

i
induced coordinates on J* (M,N) will be denoted by a = ayP/ax’.
Every local section of Jl(M N) - M is qiven by some functlons yp(x),
ai(x), so that the induced coordinates on J (M,N) _are agi = ayp/ax ,

agj = aaP/ax One finds easily that a jet A = (x % ,aP aP ,ag ) is

semi-holonomic, if and only if ag = agi, and a holonomic jet is

further characterlzed by apJ = a?l )
Let 5 be the additional coordinates on TM corresponding to x

and dxi, dEi be the induced coordinates on TTM, A local section

yp(x), ag(x) of Jl(M,N) determines a local map yp = yp(x), nP =

= a};(x)si of TM into TN. Evaluatina the tangent map, we find that

the coordinate expression of uA : TTxM - TTyN is
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p_ _pi p_ p .. i p_ _p i3 P,
(2) n aiE , dy aoidx , dn aijE ax- + aidg
If we consider uB
_ .S D S _ .8 P S _ .S p.d s, p
3 £ = p°nP, az® = pv° a ac® =p ay? + b°a
(3) . pn ' op? ¢ pqn y P n

and compose (2) with (3), we verify that (1) is a correct formula,

. . s s s
In the same time, we obtain the coordinates Cir Coir cij of Bo A in
the form

(%) cS = pSaP, ¢ =S aP,, ¢, = bS aPa9, + bSaP

i pi oi op oi’ Tij pad 1 oj p ij
In particular, this proves that our definition of the composition
of the non-holonomic 2-jets coincides with that one introduced by

Ehresmann, [ 1] . Clearly, the composition of two semi-holonomic or
holonomic jets is semi-holonomic or holonomic, respectively.

2, Pradines, [5], has introduced an involutory map i : 72 . 72

as follows. Consider the canonical involution of the second tangent
bundle i : TT M - TT M or iy : TTyN - TTyN. By [2], for every

A € 3)2((M,N)v there exists a unique iA € Fi(M,N)y satisfying n(iad) =

= iv o WA o-ix. The coordinate effect of i consists in the exchange

of both subscripts of agj Using the well-known fact that JlY -Y
is an affine bundle for every fibred manifold Y - X, we find easily
that JZ(M,N) - Jl(M,N) is an affine bundle, the associated vector
bundle of which is TN ® T*M ® T*M. Hence for every t € R we can

intrinsically define
(5) tA + (1 - ©)iA € F2(M,N)
X y

On the other hand, two points A and iA of the same affine space
determine a vector (IKTX of the associated vector space., Its coordi-
nate expression is aij - aji, so that it belongs into T _N @
® r’1r*u C T,N ® T*M ® T*M. Hence for every k € R we obtain

DU

(6) k(1A)A € T N ® A27*M
Y X

For k = 1/2, we get the difference tensor of A introduced by the
first author, [3]. Further, the kernel of the projection

. F2 - gt i f£i x %
By @ Jx(M,N)y JX(M,N)y is also identified with TyN ® T*M @ T*M,
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Hence (6) can be interpreted as,a map of Ui(M,N)V into itself. Thus,

(5) and (6) are two one-parameter families of natural operations
with semi-holonomic 2-jets.

3. Let M be the category of all manifolds and all smooth maps
and Mn be the category of n-dimensional manifolds and their - local
diffeomorphisms, We can consider 32 as a functor on the produc% cat-
egory Mn x M transforming every pair of manifolds (M,N) into J (M,N)
and every local diffeomorphism f : M, - M2 and every smooth map

. 2 2

g : N, =N, into J (f£,9) = J (Ml,Nl) 32 (M N2) defined by

' 2 a2 .2 -
7) J°(£,9)(A) = (Jyg) o Ao ]f(x)(f
for every A € J (M,N) v where the inverse diffeomorphism £ -1 is
taken locally. The same formula defines J2 or 32 as a functor on
Mn x M., If we consider a natural transformation t of any two of
these functors, we always assume that every tM N is a projectable
map over the identity of M x N,

Proposition 1. ALL natural trangormations J -3 gonm the two
one-parametens families (5) and (6).
Proof Consider first the subcategory M X M c M x M, Let L2

or L be the group of all invertible 2- jets on RnorIW‘WLthsouraaand
T2

target 0 and L ,m = J (R ) . Similarly to Palais and Terng, [4],
(7) induces the following left action of the group L2 X L; on En n
14
) cP = bpcgaJ
i qji
(8) )
=P - P g.r k. & pa _k £ p_d_k
ij bqrckctaiaj + chktaiaj + chkaij’
where (bgl b ) are the coordlnates of an element b € L2 and, to
simplify the evaluatlons, (a: ) are the coordinates ot the in-

verse element of an a € Li. In particular, a% and bp are symmetric

in both subscripts, while C?j are arbitrary quantities. By natural-
ity, the restriction of every natural transformation 32 . 32 to

-2 2 _

Ln,m is an L, x Li—equivariant map of Lﬁ m into itself, By definit-

= (¢P Py . T2 .12
ion, such a map f (£5, fij) : Ln,m Ln,m satisfies

P9 k. £
+ b cklaia +

Pq .j=ppqurk£
(9) bqu(cl,cz)ai fi(chgai’ b CpCpajay
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+ pPgd (cl,c )a kL +

P g r Lk 2
(10) bqrfk(cl’c2)fl(cl'cz)aiaj afxe J

pPg k~ppq3pqrﬂ
+ bqfk(cl'cz)aij f (bq Jal bqrckcta aJ

p.a k£ p_a_k
+ bq kzala] + chkaij)

where we use c; = cg, c, = cgj as abbreviation. To solve (9) and
(10), we shall discuss certain subgroups in Li X L;. We have injec-
tions Li - Li, (a;) r (a;,g) and Li - Li{ (bg) - (bP,0). Consider
first the homotheties of L;, i.e. put a% = k61, aJk = o, bg = ég,

P _ .
bqr = 0. Then (9) yields

P - P 2
(11) kfi(cl,cz) = fi(kcl,k cz)

Hence f? are globally defined smooth functions homogeneous of degree
1l in <y and of degree 1/2 in Cyr SO that fp must be linear in -

and independent on c_,, see e.g. [2]. U51nq the same substitution in

2
(10), we find

p _ P T2
(12) k f (cl,c ) = fij(kcl’k c2)

If we consider the homotheties of Li, i.e, if we put a; = 6;, a%k =

= 0, bP = kép, bP = 0, We obtain
q q gr
p - £P
(13) kfij(cl'cz) = fij(kcl’kcz)

By homogeneity,'(12) and (13) imply that f?j must be independent on

cl and linear in 02 2

Consider now the subgroup Ll X Li Cc L2 X L Then (9) implies

that ff represent a linear Ll X Ll-equivarlant map of R® ® R™ into

itself., It is easy to find that every such a map is of the form

= kcP k € R.

(14) c i

[kt

Analogously, f?j represent a linear Li X Li—equivariant map of R" ®
* @ R’™ into itself. A simple result by Vadovi&ovd is, [6], that
every such a map is of the form

(15) Egj = acl;J + bc?i, a,b € R,
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Consider further the kernels of the jet projectias L2 - Ll,

- . n n
and Li - L;, which are characterized by a; = 6;, bg = ég. Then (10)
yields
(1) ksz et + kcpag. = (a + b)bP %t + (a + b)cpak‘

gr i7j k7ij gr i7j k'ij

This implies k = a + b, k2 = a + b, so that k2 =k and we have two
possibilities k = 1 or k = 0, In first case, we obtain
(17) cP = P, cP. = P, + (1 - v)P,

i i S s | ij ji
which is the coordinate expression of (5). In the second case, we
get

(18) Eg = o, Egj = k(c?j - cgi)
which is the coordinate expression of (6).

For the whole category Mn x M we have one of the transforma-
tions (5) and (6) on each subcategory Mn X Mm for every integer m.
Taking into account the canonical injection i : rR" - Rm+k,

X (x,O),our'natﬁral tranformations must commute with Ez(id,i) :
32(Rn,Rm) - Ez(Rn,Rm+k) for all k. This implies directly that we
have the same transformation from (5) or (6) for all m. This
completes the proof of Proposition 1.

We remark that we have also determined all natural transforma-
tions of the holonomic second order functor J2 into itself. The
subspace J2(M,N) c EZ(M,N) being eharacterized by cgj = cgi, we can
add this symmetry condition at the very end of the previous consid-
eration. Then (17) is reduced to the identity and (18) represents
the so-called contraction transforming every 2-jet of M into N with
source x and target y into the 2-jet at x of the constant map of M
into y. This proves

Corollary 1. The only natural transformations % .7

identity and the contraction.

2 anre the

4, Quite analogously, we can determine all natural transforma-
tions of the non-holonomic second order jet functor J2 into itself,

Consider Zz = 32(Rn,Rm) with coordinates cp, cP., cP.. By (4),

n,m o o 2 i 2 oi Azij

(7) induces the following left action of Ln x Lo on Ln o
!
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53
cjai’ Soi q 03 1’

(19)
SP . = pP 9cF k E cd akaft 4 bPcd
13 bqrckcol’_ bq klaiaj qcka ij

By analogous evaluations as in the proof of Proposition 1, which we
omit here, we deduce

Proposition 2, ALL natural trhansformations 72 - 72 gorm the
following two familfies

P = |y Y Y
(20) e hci, Coi = Coir cij hc i k € R,
(21) P =0, . = ac? + beP,, TP, = 0, a,b € R,
£ 04 L 0i’ i

If we want to determine all natural transformations J2 - 32,

we have to require EE = Egi identically. This is impossible in (20)
and implies a = b ¥ 0 in (21). This rededuces the following result
by Vadovid&ovd, [6]. :

Corollarv 2. The only natural transfoxmation J2 = J2 {5 the
conthaction, )

It is easy to construct geometricallv the natural transforma-
tions (20) and (21). Since 8 : J (M,N) - M x N is a vector bundle,
Jle : J (M,N) - J (M,N) is also a vector bundle. Clearly, (20)
expresses the multiplication by a scalar on thlS vector bundle.
Further, the zero section of Jls : 3 (M,N) —~ J (M,N) is an injec-
tion i : J (M,N) - J2(M N). We have two geometric prOJectlons By
Jls : 32 (M,N) -~ gt (M,N) and (21) transforms every A € 32 (M,N) 1nto
the injection 1(asl(A) + bJ B(A)) of a linear combination of the
vectors ﬁlA and JlB(A) with prescribed coeficients a,b € R.
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