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TOTALLY REAL SUBMANIFOLDS OF S (1) WITH PARALLEL SECOND
FUNDAMENTAL FORM

Barbara Opezda

Intreduction. Let 86(1) be the unit six-dimensienal Euclidean
sphere. The aim ef this note is te prove the fellowing result.

Theerem. Let M be a tetally real submanifold of S6(1) with
parallel second fundamental ferm. If din M = 3, thea M is totally
geodesices If dim M = 2 and M is minimal, then M is tetally geodesic
er leocally flat.

Minimal submanifelds ef spheres with parallel secend fundamental
form were studied, for instance, in [3] and {4] .

Preliminaries. By using the oress-preduct in R7 ebtained as a
restriction ef the Cayley nmultiplication to the imaginary part eof
the Cayley algebra, we obtain an almest complex structure en S (1)
(see, fer instance, [1],[2] ). This almest cemplex structure will be
denoted by J. If we denote by ( , ) the standard metric tenser
field on 56(1), then (S6(1), Jy, (4 )) is nearly Kmhlerian, i.ee.
(V'3 (X,X) = 0, where V' is the Riemannian cennection generated by
( , )e The skew~symmetric (1,2)=tensor field J will be denoted
by G. The follewing fermulas are known [1] , [2] 3
(1.1) (6(X,Y),2) = -(G(X,2),Y),

(1.2) G(X,JY) = (JX,Y) = =JG(X,Y),

(1.3) (&(X,Y¥), G(2,N)) = (X,Z)(Y,W) = (X, W (Y,2) + (JX,Z)(JW,Y)
+ (JX,W) (JY,2), - .

(1e4) (V' &(X,Y,2) = (Y,J2)X +(X,2)IY = (X,Y)JZ

for any vecter fields X,Y,Z en S (1).

The tangent bundle of a manifeld N will be deneted by TN, the
bundle of all unit tangent vecters by UN and the set of all vecter

fields on N, by X (N). Let M be a submanifeld of 86(1). o™ will
denote the normal bundle ef I in s6(1). The induced connectiens in

the bundlec TM and JI" will be denoted by ¥V and D respectively. R' ,
\
R and RY will denote the curvature tensers ef the cennectiens V',V
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and D respectively. We have the formulas of Gauss and Weingartens
(1.5) VY = V¥ + oc(x v,
(1.6} v;( 3 xg g X, 6
where o is the second fundamental form of M in S (1) s A is the
Weingarten endomorphism and X,Y € ¥ (M}, § is a normal vector
field on M, In the sequal we shall use the equations of Gauss, Co-
dazzi and Ricci which are given by
(1.7 (R(X,Y}2Z,W) = (X,W)(Y,2) - (X,2}(Y,W) + (o (X,W), x(Y,2)) -
- (o (X,2),x (Y,W),
(1.8) Vo (X,Y,2) = Vot (Y,X,2),
(1.9) (R‘L(X,Y)S ' Y =( [AS 1A'?] XY,
for X,Y,Z2,W tangent to M ; g i normal to M.
Recall also that
(1.10) 7 200(X,Y,2,W) = V2 (Y,X,2,W) = RL(X,Y)oc(2,W)
- o (R(X,Y)Z,W) =o(Z,R(X,YIW)

for X,Y,z,W € (M), A submanifold M in 86( 1} is totally real if
JTME yTy Of course, such a submanifold is 2 or 3=-dimensional,

A 3-dimensional totally real submanifold of S (1) is minimal (1] .
In contrast with this case there are non-mmimal
2-dimensional totally real submanifolds of S (15 « For instance, we
know - L1] that S (1/16) can be imbedded in S (1) as a totally real
submanifold. of course, it is not totally geodesio, so there is a
vector X tangent to S (1/16) such that o'(X,X} # 0, where o' is
the second fundamental form of S (1/16) in 36( 1}, Let
M=3S (1/ 16) N X+ , where X“‘- is the orthogonal complement to X
.in R4 . Then M is totally geodesic in S3( 1/16) » Hence M can be im-
bedded in S (1) as a totally real submanifold and such that its
second form o in S6( 1) is equal to o' M + Since S3( 1/16) is mini-
mal in S (17 and «'(X,X) # 0, M is not minimal in S (1).

Proof of Theorem, Assume M is; 3-dimensional. It is known, [1] ,
that ’ '
(2.7 {e(x,1 : x,Ye MY =,
(2,2) (o(X,Y),d2) = (x(ZX,2),JdY)
and .
(2.3y  o(X,JY,2)) = JG (xX(X,Y),2) + JG (Y, x(2Z,X))
for any X,Y,2 € E(M ., The eqality (2.2) implies
(2.4) ( Ve (W,X,2),3Y) = ( Voo (W,X,Y),J2Z)

= (o (X,Y),6(W,2)) = (o(X,2},6(W,Y))

for x Y,z,W € X(M), Taking account of (1.1) and (2,3), we obtain
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(X (X,Y),6(W,2)) = = (x(X,JG(W,2)),JY) =—AG(cxX(X,W),2),Y)
-(6(W, ot (X,2)),¥)= =( o (X,W),6(2,Y))
+ (o (X,2),G(W, Y)Y,
Combining this with (2.4) we get
(2.5) (Voo (W,X,2),JY) = ( Vou (W,X,Y),Jd2) = (oc(X,W},6(Y,2)).
Since Vo = 0 and (2.1) holds, o = O,

Assume now, that M is 2-dimensional, We set

K - the Gaussian curvature of M,

JTA - the orthogonal complement to TM + JTM in TS M

the projection onto ¢f in g8 |y =T @ gy

the projection onto T™M in TS6|M = TM ® Jr

- the projection onto TM + JTM in Ts® jy = (T J™M &Y,
the projection onto U3 in TSG‘ = (™M + JIM® Y ,

Let V and U be an orthonormal basis in T M. By virtue of (1.1)
and (1.2), G(V,U} € UTH, By formula (143} G(V,U) is unit. If V,U
is another orthonormal frame at x, then V = BV + BUs

U= -(-BV+ QU), where [51 |’.’>5= 1 and consequently
6(V,0) = £ G( V,U), This means that im G defines a 1-dimensional
vector subbundle of JT3 and M is orientable iff this bundle is
trivial, Taking account of (1.5) and (1.6), we obtain

(2,6) DxJY = G(X,Y) + nJ o(X,Y) + JVXY,

(2.7) ApyX = = tJoe(X,Y) _

for X,Y. € ¥(M). The last equation implies

(2,8 (ox(X,Y),d2) = (¢ (X,2}, JY)

for X,Y,Z € X(M.

Let xeM and let M' be an oriented open neighbourhood of x, If
VeUM' , then U will denote the vector from UM' such that the pair
(V,U) is positively oriented. We denote by § the vector G(V,U)
which, of course, does not depend of the choice of V, If VeU'Mx ’
then V,U,J V,JU, §,JE is an orthonormal basis in I ¢ ¢ Since
moreover M is minimal, we have

(¥, V) = a (V)IV + a,(VIJU + az (VI + a, (NJF
%(V,U) = ay(VIIV =~ a (VIJU + c(VI§  + d(V}J§
for some real numbers a (V), a (V), a3(V}, a (V’, e(V), a(vy,
Moreover lpell 2 . 4(a M+ a (V) ) a.nd llh o 2 . 2(a (0?2
+ a4(v)2 + c(V12 + dV ) The following equalities are obvious
(2,9) G&(% ,U0) = =V,
e(g ,V) = U,
& Jg ,U) = JV,
&(JE ,V) =-JU,
Let Ve UM, and let 1 X 5 be geodesics in M' determined by

oo o+ B
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(Vyx) and (U,x) respectively. V,U will denote also vector fields

defined along ¥ 1 and Y 2 gnd paréllel with respect to V . Then

a1(V7, ay(V}, a3(V), a4(V), c(Vy, d(V) are functions defined along

¥4 @nd y 5, and they will be denoted by a5 9859 85 8, ,0 d

respectively, By a straightforward computation and by using (1.4),

(1.5}, (1.6),(2,9), we obtain
..JU=V'G(V,V,U)=-A§V+a3V+cU+Dv§ a,JV - dJu,

i.e.

(2.10) Dy§ = a,JV + (d=1)JU,

0f course (DyJ§ ,J§5 ) = 0, and by (2,10) (D5 ,J§) = 0, i.ei

(DyJ§ 4§ ) = O. Consequently DyJ§ € JIM and, by (2.6),

(2.11) DyJg = -azIV - cJU,

Similarily we get

Jv = V! G(U,V,U} = _AEU + ¢V - a3U + DU§ - dJV + a4JU,
i.es
(2.12) Dyf = (1+d}JV - a,JU,

Like in the previous case, we have
(2.13) Dyd§ = = eV + aJU,
By virtue of (2.,10) = (2.13), we obtain the following formulas
(2.14) Ve (V, ¥, V) = (Va YIV + (Va YJU + a,(d=1)JU = ca4JU
+ (Vag)§ -aa E + (1-d) a,§ + (Va,)J§
+aazJf +a ch ’
(2.15) W(v,v,U) = (Vaz)JV + ca,JV = da,JV - (Va )JU = cJU
+(Ve)§ + a (=18 =-aya, § + (Va)J§
+ a,azJ¥ - ca 198
(2.16) Ve (U,V,V) = (Ua }Jv + 33(1+d)JV - 8,cdV + (va )JU
+ (Ua )g + a, 4§ - a (d+1)§ + (Ua4)Jg
+ ca1J§ - a2a3J§
and i
(2,177 V& (U,V,U) = (Va yV + cJV - (Ua1)JU - ca,JU + dazJu
+ (Uc)§ = ay(d+)§ - a1a4§ + (Ud)Jg
+ a ng +aja Jg .
By comparing (2.14) and (2.17), and using (1. 8) we obtain at x
Va. - Ua =20a4-2da+ ,
and by (2415, (2.16) 4 (1.8)
Va, - Ua1 = 2 da3 -2 cay + ag i
Therefore cay = da3 at x, Of course this formula is valied on the
whole UM, Now, formulas (2.14) - (2,17} can be rewritten in the
following form
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(2.18)  Va(V,V,V} = (Va,}JV + (Va iU = azdU + (Vag )} - a,a,8
+ (1-d)azg + (Va }Jg +a Jg + a,edf

(2,19 Ve (V,V,U) = (Vaz)JV - (Va1)JU - cJU + (Vc)j + a1(d-1)§
- a2a4§ + (Va}JE + ayazJf = ca,Jy ,

(2420} Vo (U,V,V) = (Ua,}dV + asIV + (Ua,)JU +(UaylE + a,8,%
a.1(d+1)§ + (Ua4)Jg + caJy = a,adE

(2.21) Ve (U,V,0) = (Ua,)JV + cIV - (U2,JJU + (Uclg = ay(a+Df
- a,8,t + (UAJJg + a,ed§ + a,azJg .

Since ca, = das , we have (ho(V,V), Jho(V,U)) = O, It follows that
the vectors ho(V,V) and ha(V,U) are proportional and consequently
dim im hoa = {1, Consider the function T

130, 3X —— [lhoa(X,X 2
If V is a vector in which this function attains its maximum, then
(ha(V,V}, hx(V,U)} = O, For this vector ho(V,U) = 0 and conse-
quently (o« (V,V), o(V,U}} = O, Moreover '

i 2 j 2
TV, 2 = 8, (N2 + ay(N2 4 agV2 4 a2 - Il Inadl

2 .
Holv,03 0 2 = 2, (M2 + ay(V?2 = Lol
The above formulas and the equation of Riceci give -
(R (V0 (v, V3, % (7,0} = 2{x(V, 7, x(v,U3)2
' 2 2 12 %

. 2 2
By the equation of Gauss K = 1 - llpgdl - "hQOdL i

Consequently i '2 2
(2220 (RE (V,00(¥, 77,0V, 0)) = = LR (qg - Joe®
It is easy to check that (R*+(V,U)x(V,V},o(V,U)] does not depend of
the choice of V and hence (2.,22) holds for any Ve UM,

Now we shall use the assumption Vu= 0, By virtue of (2,18) =
- (2,21} we gee that Va, = 0, Va, = 0, Ua, = 0, Uay = 0 and
az =¢= 0 at x, Since x¢ M and Ve UMx are arbitrary, az =¢= 0
on the whole UM, Using once again formulas (2,18} and (2,19), we
obtain ..
(2423} a (V) 84(V3 = (1=a(N)) a, (W),

az(VT a (V) = (d(V)=-1) a (V')

for every Ve UM. If for every Ve UM, a4(V) = 0, then
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(2.24) (1-d(V)) a,(V} = (a(V)=1) a1(V} = 0 for every Ve UM, .

But there is a vector Ve UM, (in which x attains a maximum) such
that d(V} = O, For such a vector V, by (2,24}, a1(V) = ay(V) = 0,
i.e. Ilpotllx = 0, Assume now that there exists a vector Ve U}& such
that a, (V) # 0. The formulas (2,23) imply the equality

a (V) a, (V) + 9,2(\'72 a, (V) = 0, Hence |p oau = 0. Consequently

Ilpcxn- 0 on M, Since \70<= 0, (1.10) gives

0 = R (V,U0) «(V,V) = 2x(R(V,U}V,V},
for any Ve UM, By virtue of (2,22}, the obvious equality
AJg V= a4(V’V + d(V)U and the fact that « (V,U) = d(V)qg ’
we have

0 = («(R(V,0)V, V), x(V,U)) = (A (v, 0y Ve R(V,U)V)

= AV (Ag, v, B{V,0)V = -a(M 2K for Ve,
xe& M, Hence d(V) = O for every VeUM, or K = 0. In the first case
1

a'4(v} = 0 for every VeUM, . (If we put V= Vi-g , then
V) = a4(V7) Then o = O. The assumption Va = 0 and the Gauss
equation imply that M has constant Gaussian curvature, Hence K = 0O
on the whole M or M is totally geodesic. The proof is completed.

Exanples. It is easy to i‘ind 2 and 3-dimensional great spheres
in S (1) which are totally real., Now let M be the pythagorean

product s' (1/2) x st (1/2) (see [4] . Example 5,3). Then M is a
minimal submanifold of 83(1) with parallel second fundamental
form ( [4] , Exe 5.3, Lemma 5,2), Since S7(1) can be imbedded in
S°(1) as a totally real totally geodesic submanifold, M can be
imbedded-in S (1) as a cotally real minimal submanifold with
parallel second fundamental form, Of course M is locally flat,
Remark, If M is an almost complex submanifold of 86(1) with
parallel second fundamental form, then M is totally geodesic.
It follows from the formula (4.13) in [2] .
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