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ON THE CLARKE’S GENERALIZED JACOBIAN

M. Fabian and D. Preiss

Let f: R* —> RE be a locally Lipschitz function defined on
an open ball B(x,r) C R® centered at x and of radius r > 0.
According to the Rademacher’s theorem [5] there exists a set
Eo C R of Lebesgue measure zero such that the Gateaux derivative
Df(y) exists whenever y'eB(x,r)\~Eo. Using this fact Clarke [2]
introduced the generalized Jacobian 9f(x) as the closed convex

‘hull of all possible limits 1lim Df(yi), where y;€ B(x,r)\-Eo.
. Yi—Jy

Similarly, if Eo is replaced by a null set E CRP containing
E,, one can define 3gf(x). Thus op f(x) = 3f(x). For k =1
°

Clarke [1] showed that aEf(x) = Jf(x) for any null set E con-
taining 'Eo and asked in [2} if the equality remains trude for

k > 1. In what follows we answer this question affirmatively by
showing ’ .

v Theorem. 95f(x) = ¥f(x)

for all k and for all null sets E including Eo.

Proof. All the spaces R®™ are considered with the Euclidean
norm |l«{l. The symbol <(.,.} denotes the usual inner product.
The space of linear mappings from R® to Rk as well as its dual
will be identified with R"%. Since clearly 9pf(x) C af(x), it
remains to prove the converse. By contradiction, let us assume
that this inclusion is proper. Then there exist a functional A in
R and o/ € R such that ‘

sup {(A,L): Le Jpr(x)] < ¢ <sup {<A,Ly: Ledx(0)T
The definition of Jgf(x) yields an €>0 such that
- {A,Df(y)) < o/  whenever yeB(x,E)\ E .
Indeed, otherwise we could find y; € B(x,1/i)\E with
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(A,Df(yi)) Z « and hence there would exist an L& QEf(X') such
that {A,LY 2 £, which is impossible. Also, according to the defi-

nition of 2f(x), there is J = (il,...,in)éB(x,g)\Eo with
X < {A,DE(F)D |
By Jjoining the last two inequalities we get
<A,Df(y)» < o <(A,Df(J)) whenever y¢B(x,¢)\E .
Denoting A = (aij)" i=1,.00,k, j=1,...,n, and gy = al,jfl +
+ see t ak;jfk’ J =1,.e0yn, we can write the above inequality in

the form

n 2g.(y) n 2g.(y)
J'Z-'l _:;153_ < <jzl -——gy— whenever yeB(x,e)\E .
= = J

Let C(s) be the n-dimensional cube with apices (ilts,...,ﬁnts).
Whenever s » 0O 1is so small that C(s) CB(x,€), the above ine-
quality holds almost everywhere in C(s) and,' consequently,

g . (y) . n 2g.(y)
(%) f ——:l—,— dyy...dy, < (28)x¢ < (28)7 57 --g—
3= 1 Cc(s) 3 F1 Y

Let us denote
t%(s) = sup {[gj(y) -gj(i) -ng(i)(y—i)l : . Tiﬁ,n’yi-yi, <z s} ,
and
Cj(s) = {(yl,...,yj_l,yj+l,...,yn):
(yl,...,yj_l,ﬁj,yjﬂ,..,,yn)éC(s)} , J=1,eeeyn, 80 .

Using the Fubini theorem, we get
) f o8 ;(y)

—g—rdyl...dyn = .

C(s) J

=J, ZG‘g

(Fryeeeyy Y +%s,y eee, Y. ) X
¢ (s) 6= £1 B A

x dyl.. 'd'yj-ldyj+l° «ody, =

i

Cj:s.) (6'2:;1 s[gj(yli"'vyj-l’§j+vs!yj+1)"”yn) - gj(i) -
o9 - - - 2g.(y)
- ng(y)(yl'yl’""yj-l'yj-l"s'yjﬂ'yj*-l’""yn"yn)] + 28 ayj x
- a8 4( -
X QY s QY g 1Ay ee-dyy = -2(28)° 1 (e) + 29 —J;— (28)7"1

Hence (%) implies
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: n 0g:(y) n n Jg.(y)
(28)% h RARPNL ¥ J.s)/s <(28)Pu <(28)® 3 Y
=1 ay‘j ! J =1 l)yj

if 8 >0 1is sufficiently small. Let us note that d.(s)/s — 0
as 8 !0 since GAteaux and Fréchet differentiability in finite-
dimensional spaces coincide for Lipschitz-functions. Thus, divid-
ing the above inequality by (28)® ‘and letting s go to zéro, we
obtain a wrong inequality. This contradiction finishes the proof.

Remark 1. For f and x as above Pourciau 4] considered
a generalized Jacobian which in our notation is equal to 3E f(x)
with P 1
E; = Ej L){y €B(x,r)\E;: y 1is not a Lebesgue point of ng .

As f 1is locally Lipschitz, El is a null set. Hence by Theorem
aElf(x) = of(x).

Remark 2. The reader probably noticed that thé above proof
is actually based on the Gauss - Green theorem. In fact, this theo-
rem shows a "Denjoy property for derivatives of mappings between
R® and REw suggested by [2, Remark 5].
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