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ON.THE CLARKE S GENERALIZED JACOBIAN 

M. Fabian and D. Preiss 

n k 
Let f: R — * R be a locally Lipschitz function defined on 

an open ball B(x,r) CZ Rn centered at x and of radius r > O . 

According to the Rademacher's theorem [5] there exists a set 

E CZ Rn of Lebesgue measure zero such that the Gateaux derivative 

Df(y) exists whenever ycB(x,r)\E . Using this fact Clarke [2] 

introduced the generalized Jacobian 3f(x) as the closed convex 

hull of all possible limits lim Df(y. ), where y. €B(x,r)\E . 
y±-+y i i o 

Similarly, if E is replaced by a null set E C R n containing 

EQ, one can define 3-gfU). Thus 9£ f(x) = 3f(x). For k = 1 

Clarke [l] showed that 3gf(x) = df(x) for any null set E con­

taining E and asked in [2] if the equality remains true for 

k > 1. In what follows we answer this question affirmatively by 

showing 

Theorem. 5£^-<) = <>f (x) 
for all k and for all null sets E including E . 

Proof. All the spaces Rm are considered with the Euclidean 

norm |f.|(. The symbol <•, .> denotes the usual.inner product. 

The space of linear mappings from Rn to R as well as its dual 

will be identified with Rnk. Since clearly 3£f(x)C 3f(x), it 

remains to prove the converse. By contradiction, let us assume 

that this inclusion is proper. Then there exist a functional A in 

Rnk and U e R such that 

sup [<AfL>: L€ Pgf (x)} ^ ^ < sup {VA,L>: L£ <?f(x)] . 

The definition of 5^f (x) yields an € > 0 such that 

<A,Df(y)) < U whenever y€B(x,£)\E . 

Indeed, otherwise we could find y. 6 B(x,l/i) \ E with 

This paper is in final form and no version of it will be 
submitted for publication elsewhere. 
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<A,Df(y.)V "gr oL and hence there would exist an L6 A-f (x) such 

that ^A,L)?.^, which is impossible. Also, according to the defi­

nition of <?f(x), there is y = (ylf... fyn) <? B(x, ff) \ EQ with 

<* -<<A,Df(y)> . 

By joining the last two inequalities we get 

<A,Df (y)> < ot < <A,Df (y )) whenever y c B(x, e) \ E . 

Denoting A = ( a ^ ) , i = l,...,k, j = l,...,n, and g j = a-.^ + 

+ ••• t a
kj

f^i J = l f . | n i w e can write the above inequality in 

the form 
n ZgAy) n dg'Ay) 

21s — j b — < * ^ Z J —%T:— whenever yeB(x,£)\E . 

Let C(s) be the n-dimensional cube with apices (y-.±s,...,y is). 

Whenever s > 0 is so small that C(s) CB(x,e), the above ine­

quality holds almost everywhere in C(s) and, consequently, 

n C JgAy) • n n n -Pg.(y) 

h !> ^ r ̂ -*y"<(2s)"*<2s) & ^T • 
Let us denote 

£ ( s ) = sup f l g ^ y ) - g , ( y ) - D g . ( y ) ( y - y . ) | : max ( y j - y j <%. s'J , 
J l l J J J i=l,....,n 

and 
c j ( s ) = £<y . i . . . . .y j - i»yj+i» '"»y n ) : 

( y i , . . . , y j _ i » y j » y j + i » . . . » y n
) 6 C ( s ) } » J = -» . . .» n » s ^ ° • 

Using the Fubini theorem, we get 

* ? ^(y) 

' C ( J s ) - % - d y i , , , d y " = " • 

= J Z_» ^ g i ( y 1 , . . . , y i _ 1 , y i + « s , y i + 1 , . . . , y ) x 
C(s) <?= ±1 J - J - J J -- c • 
J 

x d y 1 . . . d y j _ 1 d y J + 1 . . . d y n = 

= c^s)U'§i < S[ S j ( y i , , , , , y j- 1 , y j +'' S , y j + 1 , , , , , y n ) " Sj(y) " 
J V _ - 1 ^ i ( y ) \ 

- DgJ(y)(y1-yi»....yj_i-y<3..i'tfs»yj+i"yj+i' ,-*'yn-yn)J + 2 s -ay"- /* 
r. 1 * ^g4(y) n 1 

X_y1...dyJ.1dy-J+1...dyn3. ^UB)*1"1^) * 2s --J-- (2s)n . 
J Hence (x) implies 
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(2s)n £ — J - (2s)n 21 ^,(JB)/8 <c(2s)n* <(2s) n £ — J — -
j=l >yj j=l J J=l <^j 

if s > 0 is sufficiently small. Let us note that <T.(s)/s *0 
as siO since Gateaux and Fr£chet differentiability in finite-
dimensional spaces coincide for Lipschitz functions. Thus, divid­
ing the above inequality by (2s)n and letting s go to zero, we 
obtain, a wrong inequality. This contradiction finishes the proof. 

Remark 1. For f and x as above Pourciau [4] considered 
a generalized Jacobian which in our notation is equal to ^™ f(x) 
with x 

E l ~ E
0 U fy ̂ B(x,r) \ E Q : y is not a Lebesgue point of Dfj . 

As f is locally Lipschitz, E-. is a null set. Hence by Theorem 
*v f(x) = <?f(x). 

Remark 2. The reader probably noticed that the above proof 
is actually based on the Gauss - Green theorem. In fact, this theo­
rem shows a "Denjoy property for derivatives of mappings between 
Rn and Rk" suggested by [2, Remark 5*1. 
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