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SET-VALUED MAPPINGS AND STRUCTURE OF BANACH SPACES
Josef Kolomy

The theory of monotone (maximal monotone), accretive'(maximal
accretive) single-valued and multi-valued mappings, intensively stu-
died in the last period, has fruitful applications in the iheory of
nonlinear partial and ordinary differential and integral equations
(f21,C41,L[8]1, 213 ).

The aim of this note is to present some known recent results
concerning single-valuedness and continuity properties of meximal
monotone and the new ones of maximal accretive multivalued mappings
and the structure of Banach spaces. )

1. Notions and notations. . .

Let X be a real Banach space, x* its duél, '<’ 7 the pairing
between X and X* ’ S (0) the unit sphere of X . We shall say that a
Banach space X is : (i) smooth if its norm is Gateaux differentiable
on §,(0); (ii) Fréchet smooth if its norm is Fréchet differentiable
on S (0); (iii) en Asplund space (a week Asplund space) if each
convex continuous functional f on X is Fréchet (GAteaux) differentinb-
le on a dense Gy subset of X, (iv) en (H)-space, if X is rotund end
the following condition is satisfied: if (x,),xeX, x, —> x weakly
in X, ux ju—>ixt, then X, —> x in the norm.of X .

The notions of rotundity (R), local uniform rotundity (LUR),
uniform rotundity (UR) of X are used in the usual sense ([151). Let
X,Y be topological spaces, T:X — ZY a multivalued mapping, - D(T) =
={ueX: T(u) #¢} its domain, G(T) =¢{ (u,v)e X x ¥: ueD(T),veT(u) §
its graph in the space X x Y . We shall say that T is : (i) upper '
semi-continuous at uoc-D(T) if for each open subset W of Y such _
that T(u )< W , there exists an open neighborhood U of u, such that
T(U)e W-;(1i) lower semicontinuous at uoeID(T) if for each open
subset W of Y such that T(uo)n W #.4 there exists an open neighborfv
hood U of u, such that T(u)n W £Z¢ for all ue U, Let X be a real nor- -
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submitted for publication elsewhere.
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. x*
med linear space. A maepping T:X-—» 2 is said to be: (i) monotone
on (T) if <u* - v¥®, u-v > 2 0 for each u,veD(T), u*e T(u),
v”e.T(v); (ii) maximel monotone on D(T) if T is monotone on D(T).
and its graph G(T) is not properly contained in the graph of any
other monotone map.
Now we give some well-known examples of maximal monotone opera-

tors. : "

%,Let X be a Banach space, f a continuous convex function on X .
Then the subdifferentiasl map

Xsu = 9f(u) ={u¥ec x¥: <u¥, v-u> T f(v) - f(u) for each
veX } 1is maximal monotone on X . In particular, a duality map-
ping J:X — 2xx defined by J(u) ={uxé ¥ 1 <u®, u> = iu “2 ’
bu¥u = uii}, ué-X , is maximal monotone on X . In fact ,

J(u) = D(-E i u I ) for each ueX . Recall that J(u) is convex
weakly compact subset of X® for each ueX . Moreover, J is single
valued on X if and only if X is smooth.

2°. If T:X —> X¥ is linear with D(T) = X and <T(u),u> £ 0 for
each ueX , then T is maximal monotone.
Let X be & reflexive Banach space, T: X:>D(T)ﬁ9 x* & closed linear
and monotone mapping such that ETT3 « Then T is maximal monoto-
ne if and only if T* is monotone. If X is reflexive, T:X = 2X is
monotone with D(T)c X , then T is maximal monotone if and only if

(T +J) X = X*¥ (C£211 ). The following result ( £21) ) is useful
in applications: "
Let X be a reflexive real Banach space, T:X —>» 2x a coercive maxi-
mal monotone operator on D(T)«< X . Then T(X) = X*¥ . For the further
results and exsmples concerning the maximal monotone operators see

[21 , £4) ana T21] .

2. Single-valuedness and continuity properties of maximal mo-
notone multivalued mappings.

Single-valuedness and continuity properties of monotone opera-
tors have been studied by Zarantonello [24] , Kenderov [19], [20) ,
Fabidn [10), [11], Fitzpatrick (£12],[131, ZajiZek[23), Christensen
and Kenderov [6],L7], Jayne and Rogers C£18] and others. We recall
here only some results which are related to those stated later con-
cerning the accretive multivalued mappings.

Theorem 1 (£19]). Let X be a Banach space which admits an equi-
valent norm such that its dual norm is (R) in X¥ , If T:Xx = 2xx
is meximal monotone with D(T) = X, then T is single-valued on a den-~
se G& subset of X ,
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If X satisfies the renorming condition of the above theorem,
then X is a weak Asplund space ([191). In particular, each WCG
(and hence each separable Banach space) is a weak Asplund space.

Theorem 2 ([20]). X is an Asplund space if and only if each ma-
ximal monotone mapping T:X —= 2X* with int D(T) #& 1is single-
valued and upper semicontinuous (with respect to the norm topologies
of X and X*) on a dense G; subset of X .

It was proved in [6]) that the similar result of Theorem 2 holds
even in the case when maximal monotonicity of T is replaced by the
condition that T is weak® compact valued and upper semicontinuous on
int D(T) from the norm topology of X into the weak® topology of x*,

Theorem 3 (L97 ). Let X be a Banach space such that X* is (R)
and (H)-space, T:X -9'2Xx a maximal monotone mapping such that
int D(T) #€ . Then: (i) there exists a unique lower selection T
of T ; (ii) for each xeéint D(T) at which T, is continuous, T(x)
is a singleton and T is upper semicontinuous (with respect to the
norm topologies of X and X¥) at x ; (iii) the set C(To) of all tho-
se points at which To is continuous is a dense Gi subset of int D(T).

According to [22] a subset AcX is said to be an ol-angle po-
rous ( « >0) if for each x €A and each &3>0 there exist zeB (x)=
={fueX: NHu-xi<e} end x¥¢ X* such that

An{yéX:(y—z,x>>c&ilxll.lly-zll}=9’ .
We shall say that A is an angle small ([22]) if A ==C7Ah y where A
are Jd -angle porous. n=1 _

Theorem 4 ([22] ). Let X be a real Banach space such that X¥
is separable, T : X m->2x‘ a monotone mapping with D(T)c X . Then
there exists an angle small subset A <D(T) such that T is single-
valued and upper semicontinuous ( with respect to the norm topologies
of X and X*') on A .

Theorem 5 ([7])). Let X be a Banach space, £ : X¥—> R a convex
* functional which is continuous with respect to the Mackey topology

2(X¥*,X). Then f is Fréchet differentiable on a norm-dense G4 sub-
set of XX . :

According to [18] = map f : X-> Y is said to be a Borel measu-
rable function of the IS Borel class if for each closed subset H of
Y the set £~ (H) is a Gy set in X .,

Theorem 6 ( L18] ). Let X be a Banach speace , T : X —=> 2
a maximal monotone operator with int D(T) #.6 . (i) If X eadmits
an equivalent norm whose dual norm on x¥ is (R) , then T has a
norm-to-weak™ Borel measurable selection '1‘° of the 13t Borel class
on D(T). The set C of points of int D(T) where T, is norm-to-weak™

x!
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continuous coincides with the set of all points of int D(T) where

T, is point-valued. Further C contains a dense Gy subset of int D(T).
(ii) If X¥ has the Radon-Nikodym property, then T has a norm-to-norm
measurable selection T  of the 15t Borel class on D(T). The set U of
all points of int D(T), at which To is norm-to-norm continuous, co-
incides with the set of all points of int D(T), at which T is point-
valued and norm-to-norm upper semicontinuous. Furthermore U is dense
Gy subset of int D(T).

3. Accretive and maximal. accretive multivalued mappings.

First of all we recall some basic and well-known notions concer-
ning accretive operators. A multivalued mapping A : X —=> 2x is said
to be : (i) accretive on D(A) if for each u,ve D(A) and each xeA(u),
y € A(v) there exists an element x*¢ J( u - v) such that (x-y,x’) 20
(ii) meximel accretive on D(A) if A is accretive on D(A) and if (u,x)
¢X x X is a given element such that for each ve&D(A) and y<EA(v)

"there exists x¥e J( u - v) such that <x - y, x*> ¥ 0, then ucD(A)
and xeA(u);

(1ii) hemicontinuous at u € intaD(A) (an algebraic interior of
D(A) ) if for each u eX, every null sequence of positive numbers tn
and every v, €A(u,), where u, =u, +tu, (v,) converges weakly
in X to some point zoe.A(uo).

Theorem_7. Let X be a reflexive smooth and rotund Banach space,
A X¥® > 2X an accretive mapping (with respect to the duality map-
ping J : X¥ — X ) such that D(A) = X¥ and for each u¥e x¥* A(u¥)
is convex and closed in X¥ , If A is hemicontinuous on X’, then A is
maximal accretive on X¥.

Let us recall that.Fabidén [11] stated the following result :

If X is a reflexive Banach space such that X, X* are both (LUR) and
A: X - 2X  is meximal accretive such that int D(A) # 4 and

( £'+21 )(X) =X for each J>0 , then A is single-valued and upper
semicontinuous ( with respect to the norm topology of X ) on a dense
Gy subset of int D(A).

Theorem 8 . Let X be a Banach space, A : X - 2 a maximal ac-
cretive mapping ‘such that int D(A) #.¢ .

(a) If X is reflexive and (F)-smooth, then there is a dense GJ~ set
D < int D(A) such that AID is single-valued and continuous from the
norm topology of X into the weak topology of X

(b) If X is (F)-smooth and the duality mapping J : X - X* is open,
then A is single-valued and upper semicontinuous ( with respect to
the norm topology of X ) on a dense Gf subset of int D(A).

L



SET-VALUED MAPPINGS AND STRUCTURE OF BANACH SPACES 349

Remark 1 , If X is reflexive smooth and (H)-Banach space, then
J is open. In particular, if X is smooth and (LUR)-Banach space, then
J is open. Note that if x* is (LUR), then X is (F)-smooth end if X is
reflexive and (LUR), then x¥ is (F)-smooth. Since X and x¥ are both
(F)-smooth, .J is a homeomorphism of X onto X* ([16]) .

Proposition 1 . If X is reflexive (F)-smooth Banach space,

A: X = 2% is accretive on D(A) and lower semicontinuous at uO(sD(A)
from the norm topology of X into the weak topology of X, then A(uo)
is a singleton. .

Theorem 8 and Proposition 1 show that the properties of maximal
accretive multivalued mappings deeply rely on the structure of Banach
spaces ( compare [19]) . '

Theorem 9. Let X be a real normed linear space, f a convex
continuous functional on X , Vo w: given points of X and X’, res-
pectively. Assume that there exists a closed linear subspace E of X
such that {ucE : Jf; I (u) ¥ c} is non-empty and relatively
weakly compact in E fo? s8me c¢>0 y where ¥ is defined by (u) =
=f (u+ vo) - <w° , u> for each u€E .-Then : '

(i) There ex;sts a point uoé-E iuch that

(%) P (ug +vIn (wy +E )£ &

(i1) If f is Gateaux differentiable at the point u, + v, o,
then the intersection (%) consists of exactly one point.

Corollary 1 . Let X be a real normed linear space, f a convex
continuous functional on X . Assume that there exists a reflexive
subspace E of X such that f(u) . j ul)-‘—€> 400 88 U —> + OO
Then: (i) If v ,wg are arbitrary points of X,x* respectively,

0
then
4

22 Cug +vo )N (WE+ET ) A O
(i1) If f 4is Gateaux differentiable on X » then the above inter-
section consists of exactly one point. ‘ -
Corollary 1 extends the results of Beurling and Livingston L[ 3],
Browder £5) , Asplund [1] . Another generalization of the Beurling-
-Livingston theorem was given by Gobbo L[17].

Further results concerning these topics will be published later.
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