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ON SETS OF SMALL MEASURE

0Iga KulcsArovéd and Beloslav Riedan

In meny epplications of measure theory it is not necessary
to know the precise value m(E), but only the fact, wheather
m(E) = 0 or m(E) # O. In another area of problems it is necessary
to know only wheather E has a "small" measure or not. One possi—
bility of precising the notion of -a small element is contained
in the following definition.

Definition 1, Let S be a lattice with the least element O.
By a small system we shall understand a sequence (N )n’ N.Cs
satisfying the following conditions:

1. OéNn, Nn+1 CNn for every néeN.,

2. If aeN ’ beS and b$a, then beN .

3, If a, b, ceN » then a vbveelN

4, If ay = 8441 (i =1, 2, oss) /\ai = 0, then to every neN

there is 1 such that aieN .

As an example one can consider a finite measure space (x,S,m)
and put N_ = { E€S: m(E)< 3 n} As eanother example one can con-
sider the set 8 of all integrable functions and put N, = {fecs:
flfl d(w < 3 n} The notion of a small system was introduced
in [4] (for G -rings S of sets only) end a review of the theory
and epplications is contained in (5] end [3]. In this note we
shall present another characterizations of small systems by the
help of real functions. This paper is in final form and no version
of it will be submitted for publication elsewhere.

Definition 2. Let S be a lattice with the least element O.

A function m: S— R will be called a submeasure, if the following
properties are satisfied: :

1. m(0) = O.
' n n
2. 1t e€ \V a,, then m(a) § 2_ m(a,).
a1 . =1 1

3. If 8 H 8y (1 =1, 2, ...) and /\a1 = 0, then
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lim m(ai) = 0, )

Our main result states.that the two concepts are equivalent
in the following way.

Definition 3. A sequence (Nn)n of subgets of S and a submea-
sure m: S— R are called to be equivalent if the following two
properties are satisfied:

(1) To every € > O there exists ne N such that achN, implies
m(a) < € . :

(ii) To every nc N there exists € >0 such that m(a) < £
implies ac€ Nn. ]

Theorem 1. Let S be a distributive lattice with the least
element O, Then to every submeasure m: S-—R there exists a small
system (Nn)n equivalent with m and to every small system (Nn)n
there exists a submeasure m: S— R equivalent with (Nn)n.'

Proof. If m is a submeasure, then it is sufficient to put
N, ={acs; m(a)< 37"}, on the other hand, to given (N,), we put

h(x) = sup { ncN; x.eNn}, f(x) = e'h(x), :

n n
m(x) = inf { :L._1 f(xi); X = 1\/1 X4y X4€8, neN}.

Evidently h(0) = oo, f£f(0) = 0, m(0) = O, Now we prove the condi-
tions 2 and 3 of Definition 2, First let b, ceS, b € ¢. Then to
every € > 0 there are cy such that \/c = G,
m(c) + £ 2 Zf(ci) 2 2 f(cy A b), where \/(c Ab) = ba Vo, =
= bAc = b, so that m(c) + E, > 2 f(cyA b) 2 m(b), hence m(b)
€ m(c). Further for every x, yES and £ > 0 there are Xy
yjé S such that x = V x ¥ = \/:y';j and m(x) + £ > > f(xi).
m(y) + £€> 2 £(y.), hence

m(x) + m(y) + 26> 2 £(x;) +2 f(yy) = m(xvy)
because of xvy \/x v V Yy Therefore m(x) + m(y) = m(xvy),
so that the condition 2 is satisfied. If 8y 2 e, (L=1,2, ..)
and /\ a; = 0, then to every nelN (with 27%< ¢ ) there is such
1 that aie N . Then h(e;) % n, m(a;) € £(a;) = 2~ (ai) =
€278« [ Hence also the condition 3 is satisfied. The fact
that (Nn)n end m are equivalent follows from the inequalities
(see [2])

m(x) £ £(x) § 2 m(x) (1)
for all x¢ S. Since m(x) & f£(x) is evident, we shall prove
£(x) ; 2m(x) only. Let

n .
1\/1 Xy Put a = 5:_1 f(xvi). We shall prove by induction
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f(x) £ 2 Z‘_ £(x;) = 2a.

b

If a < e there are two possibilities: 1. f(xi)<a/2 for all i. .,
2. There is i such that f(xi) z a/2. In the firgt case choose ma-

k=1 k
ximel k such thet )_ f£(x,)< /2. Since Z £(x;) % a/2, we
n 1=1 k
obtain 2 f(x =a - L f(x,) < a/2. Because of the inductive
L=k+1 1=1 i

assumption we have

k=1 k=1 n ,
£\ xy) £2 3 f£(x)Sa £ \V x;) €a (2)
{=1 i=1 i i=k+1

and moreover f(xk) < Z f(xi) = 8. I\iow, if we put r(a) =
’ i=1 .

= inf{ n: 270 £ a}, then
£(y) £ a => Y€ N (a) (3)
Indeed, z‘h( Y. f(y) & a implies .r(a) € h(y), so that yc N r(a)*.
k=1 n
Now (2) and (3) imply \/ X{€N oy X €Npcoys i\k/+1 xiénrga)

hence by the axiom 3 of small systems x = \/ xiC- Nr(a) 19

i=1
£(x) % 2,275 20 2 2 Z f(x ). If there is i such that
i=1
n=1 .
£(x;)  a/2 (say, f£(x,) 2 a/2), then 2 f(x;) =a- f(xn) < a/2
’ : n=-1 =
80 by induction assumption f(\/ : 2 ?- = a. By (3) we
n=-1 n
obtain }4 ieNr(a)’ x GNr(a)’ hence x = i\=/1 Xy EN. r(a)-1 and
f£(x) €& 2. 2—1‘(8.) = 2a = 2 Z f(x ). So we have proved
i=1 .
X = 1\/ xi => f(x) 2 21 f(xi)o . . (4)

The implisation (4) implies £f(x) € 2m(x), so that (1) is proved.
Now to every £ > O choose n > = log2 £ « Then xGNn

implies h(x) 2.n, £(x) S 2™, hence by (1) m(x) = £(x) S 272 < ¢.

On the other hand, for every n¢ N choose ¢ < 221 mhen

m(x) < & implies 2-h(x) = f(x) S 2m(x)<2 &< 270 g0 that

h(x) Z n and xGNn. We have proved that (Nn)n and m are equiva-
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lent.

Another possibility for chafaeterizing the family of ele-
ments of small measure gives the fuzzy set theory ([1], [6]).
By a fuzzy subset of a given space X we mean any mapping
u: X — <0, 1> . The number u(x) represents the degree in which
an element x has given property.

Definition 4. Let S be a lattice with the least element O.
We shall say that a real function us S — <0, 1> 1s a fuzzy set
of small elements, if the following properties are satisfied:

1. u(O) = 0.
n S n .
2, If b £ \V a,, then u(b) = VI u(a,).
j=1 1 =1

3. Ife; 3 a5, (1 =1,2,...) and Aa; =0, then
lim u(ai) =1,
U= oo
Theorem 2, Let S be a distributive lattice with the least
element O. Then to every fuzzy set u of small elements there is
a small system (Nn)n equivelent to u (i.e. to every n there is
¢ > 0 such that u(x)>1 -¢ = xe N, and to every € > 0O
there is ne€ N such that xc¢ Nn — u(x)>1 - ¢ ) and to every small
system (Nn)n there is a fuzzy set u of small elements eguivalent
to (Nn)n.
Proof. It is an immediate consequence of Theorem 1.
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