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ON SETS OF SMALL MEASURE 

Olga Kulcsarovd and Beloslav RieSan 

In many applications of measure theory it is not necessary 
to know the precise value m(E), but only the fact, wheather 
m(E) « 0 or m(E) £ 0. In another area of problems it is necessary 
to know only wheather E has a "small" measure or not. One possi­
bility of precising the notion of a small element is contained 
in the following definition. 

Definition 1. Let S be a lattice with the least element 0. 
By a small system we shall understand a sequence (N n) n t L C S 
satisfying the following conditions: 

1. 0GN n > Nn+1 C N n for every n&N. 
2. If a£Nn- b^S and b£a t then b £Nn. 
3. If a, bt c£N t then a v b v c £ N n «• 
4. If a. » ai+- (i =» 1, 2t ••,) Aa* • 0, then to every n £ N 

there is i such that &.»€ N • 
As an example one can consider a finite measure space (XtS,m) 

and put N aJE6Sj m(E)<3"j« As another example one can con­
sider the set S of all integrable functions and put N n = [f£S: 
/ |f | ĉ v < 3 ; • The notion of a small system was introduced 
in [4] (for tS'-rings S of sets only) and a review of the theory 
and applications is contained in [5] and [3]» In this note we 
shall present another characterizations of small systems by the 
help of real functions. This paper is in final form and no version 
of it will be submitted for publication elsewhere. 

Definition 2. Let S be a lattice with the least element 0* 
A function m: S—>R will be called a submeasure, if the following 
properties are satisfied: 

1. m(0) =- 0. 
n n 

2. If a ̂  V a.t then m(a) » 2- m(a,). 
i»1 \ i»1 x 

3. If &1 » ai-M (i = 1t 2, ...) and A a j « 0t then 
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.lim m(a,) = 0. 
L->oO 1 

Our main result states.that the two concepts are equivalent 

in the following way. 

Definition 3. A sequence (Nn)n of subfets of S and a submea-

sure m: S—>R are called to be equivalent if the following two 

properties are satisfied: 

(i) To every £ > 0 there exists n^N such that a£N n implies 

m(a) < £, . 
(ii) To every nCN there exists £ > 0 such that m(a) < £, 

implies a£ Nn. 

Theorem 1. Let S be a distributive lattice with the least 

element 0. Then to every submeasure m: S—>R there exists a small 

system (N ) equivalent with m and to every small system (N ) M 

there exists a submeasure m: S—-> R equivalent with (N ) . 

Proof. If m is a submeasure, then it is sufficient to put 

Nn = [ R€ S; m(a)< 3~n}. On the other hand, to given (Nn)n we put 

h(x) = sup { nGN; x ^ J , f(x) = e" h ( x\ 

n n 
m(x) = inf { 2Z f (x.); x = V x,, x, € S, n£ NV. 

: i=1 x i=1 x x 

Evidently h(0) • <*& , f(0) = 0, m(0) = 0. Now we prove the condi­
tions 2 and 3 of Definition 2. First let b, c£S, b = c. Then to 

every £ > 0 there are c, such that \/c, = c, 

m(c) + £ £ .27-^(0^) » .21 ftOjAb), where \/(<5tAb) = bA V o^ « 
= bAo = b, so that m(o) + £ > H f(c,A b) = m(b), hence m(b) = 
= m(c). Further for every x, y£S and £ > 0 there are x^, 

y,G S such that x = V x,, y = Vy.* and m(x) + £ > XT f(x;L), 

m(y) + £ > 2- f(y.«), hence 

m(x> + m(y) + 2 £ > Z f(xi) + Z ^(Yj) - m(xvy) 

because of xvy = V x i v V yy Therefore m(x) + m(y) = m(xvy), 

so that the condition 2 is satisfied. If a, = a,+1 (i = 1,2, ...) 

and /\ a, = 0, then to every n€N (with 2~n< £ ) there is such 

i that a ^ tfn. Then h ^ ) = n, m(ai) £ t(at) = 2~h(a1) = 

= 2"n< £, . Hence also the condition 3 is satisfied. The fact 

that (N ) and m are equivalent follows from the inequalities 

(see [2]) 

m(x) = f(x) » 2 m(x) (1) 

for all xGS. Since m(x) = f(x) is evident, we shall prove 

f(x) = 2m(x) only. Let 
n n 

x » V x,. Put a - 51 f(x,). We shall prove by induction 
i*1 x i=1 x 
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. n 
f(x) = 2 H f(x.) = 2a. 

1-1 i 

If a < co there are two possibilities: 1. f(x.)< a/2 for all i. . 
2. There is i such that f(x.) 5 a/2. In the first case choose ma-

k-1 k 

ximal k such that 2— f(x, )< a/2. Since X_ f(x.) = a/2, we 
- - 1 _k i = i x 

obtain 2— f (x , ) = a - Z_ f (x . ) 2 a/2. Because of the inductive 
i=k+1 x i=1 L 

assumption we have 
k-1 k-1 n 

f ( \ / x , ) = 2 XT f (x . ) = a, f( V x . ) S a (2) 
i=1 x i=1 n - i=k+1 x 

and moreover f(x.) = 2__ f(x.) = a. Now, if we put r(a) = 
K i=1 x 

= inf { n: 2~n = aj, then 

f(y) i a =»> y£N r ( a ) (3) 

Indeed, 2~h(y)= f(y) = a implies r(a) = h(y), so that ye Nr(a). 

k-1 n 

Now (2) and (3) imply V x ^ N ^ . , x k6N r ( a ), V^ ^€Vx{&) 

n 
hence by the axiom 3 of small systems x » V x. £ N , x 1f 

i=1 x r^a;-i 
n 

f(x) i 2.2" r ( a^ 2a = 2 51 f(x,). If there is i such that 
iss1 n-1 • 

f(x,) £ a/2 (say, f(xj = a/2), then Yl f(x,) = a - f(xj = a/2 

n-1 1=1 

so by induction assumption f(V x.) = 2 % = a. By (3) we 
i=1 n-1 x n n 

obtain V x i G N r ( a ) , » n 6 N r ( a ) , hence x = V x i e N r ( a M and 
n "" 

f(x) i 2.2""r^a* « 2a « 2 E f(x,). So we have proved 
i»1 1 

n n 

x » V x, => f(x) i 2 Zl f(x,). (4) 
i-1 * 1=1 . 

The implication (4) implies f(x) = 2m(x)f so that (1) is proved. 

Now to every t > 0 choose n > - log2 i . Then x GNn 

implies h(x) = n, f(x) t 2"n, hence by (1) m(x) « f(x) » 2"n < I . 
On the other hand, for every n£N choose £, < 2 • Then 

m(x) < £, implies 2" h ( x ) *- f (x) * 2 m(x)< 2 £ < 2"n so that 

h(x) » n and x£N . We have proved that (̂ n) and m are equiva-
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lent. 
Another possibility for characterizing the family of ele­

ments of small measure gives the fuzzy set theory ([1]t £6]). 
By a fuzzy subset of a given space X we mean any mapping 
u: X — > < 0 , 1> . The number u(x) represents the degree in which 
an element x has given property. 

Definition 4* Let S be a lattice with the least element 0. 
We shall say that a real function u: S — > < 0, 1> is a fuzzy set 
of small elements, if the following properties are satisfied: 

1. u(0) = 0. 
n n 

2. If b * V a, f then u(b) i "U u(a,). 
i«1 L i»1 1 

3. If a. ^ a,+1 (i = 1, 2, ...) and A e.^ » 0, then 
lim u(a.) • 1. 

Theorem 2. Let S be a distributive lattice with the least 
element 0. Then to every fuzzy set u of small elements there is 
a small system ( N ) equivalent to u (i.e. to every n there is 
t > 0 such that u(x)> 1 - £. => * £ N n and to every £ > 0 
there is n £ N such that x^N -=-> u(x)> 1 - L ) and to every small 
system (IL)n there is a fuzzy set u of small elements equivalent 

Proof. It is an immediate consequence of Theorem 1. 
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