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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

Canonical equivalence relations for parameter sets

H.J. Prdmel and B. Voigt

Let € be a class of objects with a binomial coefficient I:(g) .
Intuitively- C(AB) is the set of all embeddings of B into A,
respectively the set of all subobjects of A which are isomorphic
to B . Embeddings £€I:(AB) and gEE(g) may be composed yielding
fg GE(é) . As known for categories this composition should be asso-

ciative.

Notation: H(E(é)) denotes the set of equivalence relations on
C(é) . For = EH(I:(%)) and f GE(%) then Te EH(E(g)) denotes
the restriction of =7 to the subobjects of f, i.e. g ~h(mod me)

iff fgesfh(mod ) .

Definition: A set Acn(u:(g)) is a canonical set of equivalence
relations (w.¥.t. Band C) iff (1) there exists an A' €C such that
for all A €L with E(ﬁ.) 49 and €II(|I:(3)) there exists an

£ EE(Q) such that 7 €A and (2) for every o €EA and every AE€C

there exists a ﬂGH(E(é)) such that Te =0 for every f EE(‘B\) .

Motivation: 1In recent years it has turned out that canonical sets
of equivalence relation yield a deeper insight into the partitional

behaviour of certain structures. One of the first theorems in this
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direction is the 'Erdés-Rado-canonization theorenm' [1] which describes
canonical equivalence relations for Ramsey's theorem. More recent
Tesults are due to A. Taylor [4] for Hindman's theorem and Ne¥et¥il

and R3dl [5) for graphs and hypergraphs.

Here we study Hales-Jewett classes [A] , where A 1is a finite set.

Definition: Let A be a finite set, k<n be non-negative integers.
[A](;) than is the set of mappings fin-AU{)5,...,3,_;} - where
for convenience always n ={0,...,n-1} - satisfying

(1) £7'() +0 for i<k and (2) min £'0) <nin f"(xj) for
all i<j<k.

Parameter words f €[A] (:) and g E[A](:) may be composed yielding
f-g E[A](z) , where f£f-g(i) =f(i) for £(i) EA and f-g(i) =g(j)

for f£(i) -Xj .

Notations: For sets ACB we always assume INI(A) SN(B) by extending
bs~b(mod ) for all bLDEBNA, mwE€EN(A) . N(A) is partially ordered
(in fact it is a lattice) by w20 iff aw~b(mod w) implies

a™Nb(mod o) for all a,b€a .

Definition: A sequence % = (rgs---»m) of equivalence relations
n; €n(A U{lo.....li}) is k-canonical iff (1) T STy S...S M
and (2) if ); ~a(mod m;) for some a €A U{Ao....,li_]) then

ﬁ’i+l ‘ﬂi .
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. : N . . . n. -
Notation:- Let 'm.=(m; ,5i:ii,7 )" be ‘k-canonical and- f£-€[AJ() .

For i'%k 2 ther ﬁ\'.\mbér‘s-:d){‘,\{(f',i’)ﬂ ~arerdefined ‘by~ . C-v - oo -

wp (EE) SMIN 7> ) (,4-1) 71 £4§) ™3 (mod 7{)3] vhere for convenience
w w

w (£,-1) =1 . . cadgeagysayy e adee~ o 1) pncue
» 192 83imi} B 2@ A 9ys e (A eroevlt Snawel - 0 0 in ew s

Definition: Let ﬁ‘(ﬂo,...,nk) be k-canonical. The partition

1(n) €II([A](k)) is defined by:

tnl osvela. s wod Lo o Ldten v T 5 w4 . O S & 8 R P

f~g mod(ﬁ(n)) 1ff for all i =-1 0,...,k-1 for &al1T ;“-svith

MIN(w, (£, ;) ,wA(g,x)) < f.’,<n fonows' £(EY &g(E)" (ix‘o’d’vf“”) .

wo (.;Lr\ i ‘b,\g Cie (8 ¢ e et o :*:_M’ 1o
The main theorem then is: LA E>1 fls

waib ity bozao oo agd TELA /::‘-‘f - 3 o, j; : 2 b3

: 4 A, LER (piba A “bIow :s:sm 8%
Theorem: The set {w(m)l s k- canonlcal} “is a canonlcal of
= 0 liged sisaw ((}{)[A}. .1

.1 Y P S

[ & I n't
equivalence relations (w.r.t. [A] k m)
i‘ = {i31 =701

The theorem has many interesting applications, we only state two of

‘them: explicdelyi) "> )7 crvazs ave.le sw 82 A 2352 Yod tznoiistor
Serabye vl ie - H P a . .
Sstabre vils ooy L Tl LAY o LA 23d lls 301 (7T ba-ldia i

Corollampilsi~ For{ every; finiteiset . A . and nppsnegative, integer m .,
d;nppsnegative, integer

3

there exists an n , such that for every Igguévglen;e x,e-latii,onb.)_')*. .

o €n([A) (8)) there exists an f €[A](;) and a w €N(A) such that

forzabktegsk €.=[‘A:],('3:)z idfollows ( g:wh(mod. me)r iff., g(E)"th (_;)g_gggg 9

for gvery..2<mz2 o7 (1Y =

- N e 1. 3 -
2 kw'«w--.o’uk’nv}-.‘B 3T

nad1. {

r-z-"“-"o U AI e swor 30 (.r bomisa F 0t (% bas

Corollary 2: For every positive integer m there exists an _n .

P07 1+}
such that for every equivalence relation ER((;),E‘;;)) on the set
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of pairs (A,B) of subsets of n with ACSB, A#B there exists

a P(m)-sublattice of P(n), i.e. sets Xg»XyseeeX , with

X; nxj =X, and X *Xj for i*j such that one of the following

5 case holds for all pairs (A,B) , (C,D) AgB, CgD: .

(1) (A,B) n(c,D) (mod #) iff A =C and B =D
(2) (A,B) »(C,D) (mod 7) iff BNA=DSNC

(3) (A,B) »(C,D) (mod w) iff A =C

(4) (A,B)~(C,D) (mod w) iff B =D

(5) (A,B) ~(C,D) (mod w) for all (A,B) , (C,D) .

Analogous theorems may be established for finite vector spaces

and affine spaces. Details and proofs are going to appear elsewhere.
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