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THE COHOMOLOGY OF é’m,z
WITH INTEGER COEFFICIENTS

JIRf VANZURA

ABSTRACT. This paper contains the description of the cohomology ring H '(é,.,,;Z)
of the Grassmannian Gy, 2 of oriented planes with integer coefficients. We describe the
ring in terms of generators and relations.

1. INTRODUCTION AND PRELIMINARIES

The description of the cohomology ring H*(Gy, 2; Z) seems not to be available in
the literature. Its knowledge is necessary for example when studying the existence of
2-dimensional subbundles of a vector bundle. Another reason for writing this paper
was the necessity to use some results from it in our forthcoming paper [CV] about the
cohomology ring of the Grassmannian G, 2 of nonoriented planes with integer and
twisted integer coefficients.

We shall consider the vector space R* with its canomca.l orientation. The symbol
G’,, k, where 0 < k < n, will denote the Grassmann manifold of oriented k-dimensional
subspaces in R®, and 4, will be the the canonical oriented k-dimensional vector bundle
over @,.,k. The vector bundle 7% is obviously a subbudle of the trivial n-dimensional
vector bundle €™ with the fiber R®, and it has a riemannian metric induced from
the canonical riemannian metric on ™. There is also the orthogonal complement "7;:'-,
which is an (n — k)-dimensional vector bundle. We orient it in such a way that the
orientation of 4x @ 7 coincides with the canonical orientation of e™.

From now on we shall assume that n > 4. We shall consider the unit sphere bundles

T - Sl’.iz — é,._z
and
Mg : 8" p_1 — Gpyp-1.
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1. Lemma. The total spaces S'7; and S™24,_, are homeomorphic.

Proof. We can easily construct a mapping ¢ : S92 = $™~24,,_1. An element from
S'%, is a couple (@, v), where @ C R" is a 2-dimensional oriented subspace and v € &
is a unit vector. In a there is a unique unit vector v’ orthogonal to v such that
{v,v'} is a positive basis in . Further let v denote the orthogonal complement to v
endowed with such orientation that the natural orientation of [v] ® v coincides with
the orientation of R®. We can now define ¢ by the formula

w(a,v) = (vi,v').

It is easy to verify that this mapping is a homeomorphism.

Our next aim is to compute the cohomology ring H*(S™24,,_1;Z). We shall use
the Gysin sequence for the fibration

S"2 B 523 B Gy S
We have to distinguish two cases.

2. n IS EVEN

The Euler class e = e(Yn—1) € H*"(S""1;Z) has order two and consequently
e = 0. Therefore we get the Gysin sequence in the form

o D HHE™Y) B RSP0 ) o BF (S S L
Thus we can immediately see that
H*(S™"25,_1;Z)=0 fork#0,n—2,n—1,2n—3.
Because S™24,,_, is connected, we havg
H°(S™%%,_1;Z) = Z.

It is also easy to determine the remaining cohomology groups. For the later use we
shall write here the relevant parts of the Gysin sequence. For k = n — 2 we get

0= H™2(S*1) B gn-3(§"25,_,) - HY(S* ) =25 ...

which shows that
H" (8™ 23,_;Z) = Z.

For k =n—1 we get

Sz = gy sty I pnel(sh25, ) —» HY(S™Y) =0
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which gives
H*1(S"%3,_1;2) = Z.
Finally for k = 2n — 3 we have

0= H™-3(g"1) 33 g2n-3(5n-25, ) o H*}(S" ) =25 ...
which gives
H 38" %5, _1;Z) = Z.

Because S"~24,_, is a manifold of dimension 2n — 3 this determines the additive
structure of the cohomology in question.

Now we shall describe generators in the above groups. Let us denote ¢ = =1 :
S"23,-1 = S'7,. It is easy to see that for an element (3, w) € S"~24,_1, where
B C R" is an oriented (n — 1)-dimensional subspace and w € 8 is a unit vector we get

¥(8,w) = ([8*,w],64),
where 8+ denotes the unique unit vector orthogonal to 3 and such that the natural ori-
entation of [31]® coincides with the orientation of R*. We orient the 2-dimensional
subspace [+, w] by taking {8+, w} as a positive basis. On S®~24,_; we have an
oriented (n — 2)-dimensional vector bundle ¥*x}¥;. Its fiber over the point (8, w)

has the form
((8,w), wg),

where w;}' denotes the (n —2)-dimensional subspace of 3 orthogonal to w and oriented
in such a way that the natural orientation of [w] & wé' coincides with the orientation

of B. If we consider again the fibration S"~2 33 §7-25, _; T §"-1 we can easily see
that i3y*n173 = TS™ 2, where TS™~2 denotes the tangent bundle. Let us orient
TS™2 in such a way that this is an orientation preserving isomorphism. We denote
w € H*2(S"-2;Z) the generator uniquely determined by the orientation of TS™~2.
Obviously we have e(i3¥*7}73-) = 2w, where e denotes the Euler class. The Serre
sequence for this fibration (with Z-coefficients) shows that i3 is an isomorphism. We
denote by a the unique element a € H*~2(S"~24,_,) such that i3a = w. (We shall
also write a instead of ¢*a.) Obviously a € H*~2(S"~23;,_,) is a generator. We have
then .
e(¥*ni%;) = 2a.

The same Serre sequence shows also that #3 : H*~1(S"~1) 5 H"-1(8"—23,_,) is
an isomorphism. Let # € H™ !(S"~1) be a generator. We take a generator b €
H™1(S"~23,_,) such that b = n30.

We shall now prove that c = ab is a generator of the group H?*~3(5"~23,,_,). For
this purpose we shall use the oriented vector bundle ¥,,—; over S*~1. Let

Ue H“_I(Bn-l -n—h Sn—z;in—l) .
(again with Z-coefficients) denote the Thom class. We then have
da=+1UU.

Because b = 730 we have
d(ad) =+0UU, -
which shows that ab is a generator. We have thus proved the following proposition.
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2. Proposition. The cohomology ring H*(S™~%y,_1;Z) is isomorphic with the
graded ring
Z[a,b]/(a’ b%),

where dega=n—-2, degb=n—1.

We shall now use the above results for the computation of the cohomology ring
H*(Gn2;Z). (We recall that n > 4 is even.) For this purpose we shall use the Gysin
sequence for the oriented vector bundle 7, over C-J',.,z. We shall denote e = e(7;) €
H? (é,.,g; Z) the Euler class of 4,. First we shall prove the following proposition.

3. Proposition.
sz(f}’,.,z; Z)~2Z>e for 2k<n-2
with e* being a generator,

sz“(én,z;z) =0 for 2k+1<n-2.

Proof. Because C:',.,g is connected we have H °(C~1‘,,L2; Z) = Z with the generator 1 = €°.
Because G, 2 is simply connected we have H 1(Gp,2;Z) = 0. Now it is sufficient to
proceed by induction using the Gysin sequence for the vector bundle ¥».

4. Proposition.
H*®Gn2iZ)2Z for 2n—4>2k>n-2,
Hw'l(én,z; Z)=0 for 2k+1>n-2.

Proof. C.v‘,.,z is an orientable compact manifold of dimension 2n — 4. This implies that
H2n—4 (C:',,,z;Z) >Z. (3',.,3 is simply connected, and consequently H, (@,,,2) =0. The
Poincaré duality gives then H2"~5(Gy, 2; Z) = 0. Now, it is again sufficient to proceed
by induction (going down) using the same Gysin sequence as above.

It remains to compute the group H"‘z(@,.,z; Z). The relevant part of the Gysin
sequence has the form

0= H™3(5'7,)  H"*4(Gra) = 2% H"?(Cn2) 3

5 H2(815,) = Z — H"3(Gn2) =0,

which gives .
H"3(Gpo;Z)2ZDZ.

It is easy to see that in this group we can choose the generators e(®~2)/2 and f’, where
f' satisfies 7} f’ = a. Obviously the Euler class e(y;) can be uniquely expressed in
the form

e(77) = e~/ 4+ of'.
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We shall use the standard notation w; = w;(72) for the Stiefel-Whitney classes. From
the relation 4, @ 73~ = €™, where €™ denotes the trivial n-dimensional vector bundle,
we can easily find that wy(J5-) = wa. This shows that the integer u is odd, i. e.
u = 2v+ 1. Taking f = ve(®=2/2 & ' we obtain for H"~2(G, 5;Z) the generators
e(®=2)/2 and £, and for the Euler class e(73-) we have the formula

e(id) = e D/2 4 3,
Moreover the same relation 7, @ 43~ = €™ shows that
e™? = —2¢f.
Let us consider now the following part of our Gysin sequence.
Z0Z=H""*Gn2) = H*(Gn2) =Z - H"(S'3,) =0

We can see that e(®=2)/2 4 2f and f is a base of H"2(Gp 2) considered as a free

module over Z. Because (e(®~2)/2 4+ 2f) U e = 0 it is obvious that ef is a generator.
We have .
H"%(Gn2;Z) = Z & Z with generators e®~2/2 and f.

Using this result and the same Gysin sequence as above we obtain by induction
H?*(G,2;Z) = Z with generator e*—"+2/2f for 2n —4 > 2k > n - 2.

It remains to determine f2. Obviously f2 = te(n=2)/2 f, where t is an integer. Our
next aim is to determine this integer. We shall apply the Gysin sequence of the vector
bundle _

7t ’y-j‘ — G2
with Z-coefficients. More precisely, we shall need only the following piece of the Gysin
sequence.

-~ L ~
H"_z(Gn,z) U_E’ H2"—4(Gn,2) N H2"-4(S"_3’72l),
where S™~37;- is the sphere bundle of 43 and e = e(¥5). We know already that
et = e("=2/2 4 2f
Obviously, we must first calculate H2"~4(S™~343"). Let us notice first that S™~37;

is a compact connected orientable manifold and dimS™353 = 3n — 7. For this

purpose we shall consider the following part of the Gysin sequence for the vector
bundle 75-.

L

0=H""3(Gnz) » H"3(S"33) & H(Gn2) =25
Y H"3(Gnp) =202 - H™(S"5}) - HY(Gn2) =0
From this sequence we get immediately

H™3(5™%4) = 0
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H"2(S""338) =Z with the generator (71)*f.
Using the Poincare duality on S™~373- we get
Hon_5(S"%33) =2, Han-o(S"343)=0.

Now it is sufficient to apply the universal coefficients theorem. We can write the exact
sequence

0 = Ext(Hzq-5(S"%34),Z) - H*4(S"35%;2) —»

— Hom(Han_4(S™33%),Z) = 0,

which shows that
H*4(S"%3;;2) = 0.

Now we can see that the mapping
L . Hn—2(0"n,2) - H2n—4(én,2)

is surjective. We have

(e(n—z)/ 242f) (e(ﬂ-'«’)/2 +2f)= 2e(=2/2f 4 4f2 = 2+ 4t)e(ﬂ—2)/2 f
(€™ D2 1 2f) = en=D/2f 4 2f2 = (14 2t)e™-2/2f
Consequently, there exists integers r and s such that
r(2+4t)+s(1+2t)=1.

This equation can be written in the form

(1+2t)(2r+3) =1,
which shows that ¢ = 0. We have thus proved that

f2=0.
We have obtained in this way a description of the integral cohomology ring of é',,,g.

5. Theorem. The cohomology ring H*(Gy 2;Z) with n even, n > 4 is isomorphic
with the graded ring

Zle, f/(e"* + 2¢f, £%),

where dege = 2, deg f = n—2. Moreover, under this isomorphism, e(¥3-) correspond
to the class determined by the element e(®=2)/2 4 2f.
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3. n1s opD

Let us denote by w € H*~}(S™~1; Z) a generator of S®~!. Because 4,_, is isomor-
phic with 7S™~! we have e = e(y,-1) = £2w. Obviously, we can choose w in such a

way that e = e(J,—1) = 2w. The same Gysin sequence as in the even case gives us
first
H®(S™ %4,-1;Z)=0 fork#0,n—2,n—1,2n—3.

We have obviously
Ho(sn_zﬁn—l; Z)=Z.

For k = n — 2 we get
0= H"%(S"1) o H"3(S™%,_1) = HO(S™!) = 2% H™-1(571) = 2,
which shows that
Hn-Z(Sn—Z-"_l; Z) =0.
Next for k =n — 1 we have
Z=H'(S"Y) % H"1(S" ) = Z - H* 1 (S" 27,_1) = HY(S" 1) =0,
which gives
Hn-—l(sn—2—"_1;z) = z;.
Finally for k =2n — 3 we get
0= H2n—3(Sn—1) - H2n-3(sn-2-n_1) - Hn—l(sn—l) =7 - HZn—Z(Sn—l) = 0’
which gives
H¥=3(5m%5, _1;Z) = Z.
The following proposition is obvious.

6. Proposition. The cohomology ring H*(S"24,_1;Z) is isomorphic with the
graded ring

Z[z,3)/(22, 2% zy,v7),
where degx =n — 1 and degy =2n — 3.

We shall now again compute the integral cohomology ring of én,z. We start with
the following proposition.

7. Proposition. .
H'(Gn2;Z)=0 fori odd.

Proof. Gy 3 is simply connected. Therefore Hy(Gn2;Z) = 0 and H(Gp2;Z) = 0.
The Poincaré duality gives H2"~5(Gy, 2;Z) = 0. Proceeding now by induction (first
going up, then going down), and using the Gysin sequence for the vector bundle 7,
we get easily the assertion.
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8. Proposition. .
H”‘(Gn,z; Z)2Z for2k<n-—1.
with the generator being e*.

Proof. Obviously Ho(é,.,z;Z) & Z with the generator 1 = €°. Now, it suffices to
proceed by induction (going up) and use the same Gysin sequence as above.

9. Proposition.
H”‘(C.}',.,z;Z) >Z forn—-1<2k<2n-4.
Proof. We proceed in the same way as above with the induction going down.
It remains to determine the group H"~1(Gy, 2; Z). The Gysin sequence gives here
0=H""%(5'%,;) = H"3(Gn2) =25 H* 1(Gn2) -
- H" 1 (S',) = Z; = H"3(Gp2) = 0.
The last group vanishes because n — 2 is odd. From this exact sequence we can

see that H“‘l(é,.,z) & Z or Z @ Z,. Associated with the exact coefficient sequence
0> Z — Z — Zy — 0 we have the exact sequence

0= H""(Gn2Z2) & H" (G 2:2) 3 H™ (G 2),

where g is the Bockstein homomorphism. We can see that the homomorphism 2x is
injective and consequently H"~1(Gy 2; Z) & Z. We have the following exact sequence.

0=H""2(S%2) = H" 3(Gn2) =25 H* }(Gn2)=Z >
— H"Y(8;) = Zy - H"2(Gn2) =0

Now it is obvious that we can choose a generator f € H ""1(63,.,2) in such a way that

there is
em—1/2 _ 9 f.

10. Proposition.
H¥*®(Gp2;Z) 2 Z > e®n+0/2f  forn—1<2k<2n—4.

with e@¥—n+1/2 f being a generator.
Proof. 1t is of the same type as before.

Now we get easily
11. Theorem. The cohomology ring H‘(é"|2;Z) with n odd, n > 5 is isomorphic
with the graded ring

Zle, f]/ ("2 — 2f, £%),
where dege = 2, deg f = n — 1. Moreover, there is e(fo™) = 0.
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