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RECONSTRUCTING EQUIVALENCES 

Vaclav Nydl 

Abstract; A graph is called an equivalence if each of its com­

ponents of connectivity is a complete graph. We ask whether an equi­

valence is uniquely determined with its k-point subobjects. For 

each k we prove: 1/Every equivalence on less than k.ln(k/2)-point 

set is uniquely determined with k-point subobjects; 2/It is not 
k—1 true that every equivalence on at least (k+l).2 -point set is 

uniquely determined with its k-point subobjects. 

0. Introduction 

We denote <V,W> the ordered pair where the first member is V 

and the second one is W. P2(X) denotes the set of all 2-point sub­

sets of the set X. An ordered pair G » <X,R> where RcrP2(X) is cal­

led a graph and we denote IGI » card X the number of points of X. 

The complete graph on X is the graph <X,P2(X)> and we denote K^ the 

standard complete graph on n-point set. For the graph G » <X,R> 

and the set Y e x we define the induced graph G/Y * <Y,RriP2(Y)> . 

In usual sense we work with concepts in graph theory, namely the 

connectivity of graphs, components of connectivity, isomorphism of 

graphs. The number of components of G is denoted cp G; isomorphic 

graphs are denoted G—H and nonisomorphic graphs G9--H. 

For every sequence of complete graphs K , ... , K„ it is 
n1 ns 

the standard sum K » K^ + • • • + K^ with components of connectivi­

ty C1, ... , 0S satisfying K / C ^ K^ ; if n1 «... » nQ » n we wri­

te simply K » s.K . 

Definition 0.1. A graph E is called an equivalence if E is 

isomorphic to a sum of complete graphs. 

Definition 0.2. The frequency of the graph H in the graph G 

This paper is in final form and no version of it will be sub­

mitted for publication elsewhere. 
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is the number frq(H,G) - card <Y; G/Y—H). For an integer k the no­

tation G.- /5 G2 /G.- Sj G2, respecively/ means that for every graph H 

such that iHl « k /|H| ̂ k, respectively/ the equality frq(H,G1) • 

frq(H,G2) holds. 

Remark 0.3. An induced graph of an equivalence is an equivalence. 

Thus, if E is an equivalence then frq(H,E)>0 if and only if H is 

an equivalence. 

We have showed in [6] the following theorem. 

Theorem 0.4. Let k be an integer, G«pG2 be graphs. Following 

three properties are equivalent /i/ G.« -~̂  G2, /ii/ G1 "^ Ĝ  , 

/iii/ for every connected graph H, lHl-̂ k, it is frq(H,G1) • frq(H,G2) 

Now, for the case of equivalences we get: 

Theorem 0.5. Let k be an integer, E^E? be equivalences. Folio-

wing three properties are equivalent /i/ E. ̂  E2, /ii/ E,. ~ E2, 

/iii/ for every j <k frq(Kj,E1) = frq(Kj,E2). 

Proof. Use Remark 0.3., Theorem 0.4. and the fact, that only 

complete graphs are connected equivalences. 

1. Frequencies in equivalences 
Throughout this part of paper let A, B, C be equivalences, A « 

m a.K^f B m K^ where a>09 u> 0, v> 0, Q » s.Ku + Ky and for every 
i ̂ u+v Q± • (s-1)..^ + K±. 

Definition 1.1. We define two numbers for any equivalence E 
<A,B>*E » card {<Y,Z>j E/Y^A,E/Z^-B> » frq(A,E).frq(B,E), 
<A,B>HE « card^<Y,Z>; E/Y^A,E/Z^B,YU Z « X>, where E » <X,R> . 

Lemma 1.2. Let E be an equivalence. Then card{<Y,Z>; C/Y—A, 
C/Z^-B,C/(YUZ)^E}» DA,B>+*Elfrq(E,C) . 

Proof. The number of the sets W such that C/W—E is frq(E,C). 
For each such a set W we have <A,B>||E ordered pairs <Y,Z> satisfy­
ing C/Y^A, C/Z^B, W » YU z# 

Remark 1.3. Equivalences A,B in Lemma 1.2. can be arbitrary. 

Lemma 1.4. The following equality is true 
u+v-1 

<A,B>*C -f^-- [<A,B>UQi].frq(Q1,C) + C<A,B> HQU+V3 .frq(Qu+y,C) + 

+ [<A,B>*fQ].frq(Q,C) . 

Proof. We denote MQ »{ <Y,Z>j C/Y-^A.C/Z^Bland further for 

every U U + T 1^ »{ <Y,Z>; C/Y^A,C/z*-B,C/(Y UZj-^-Q^. Finally, 
M -{<Y,Z>; C/Y--'A,C/Z-*B,C/(YUZ)=srcf> We have the disjoint decom­

position MQ - M1 u ... U Mu+y-i U Mu+vU M and we can write card MQ -

L-1 
card Mj + card tfu+v + card M. Using Lemma 1.2. we obtain the 
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needed equality. 
Lemma 1.5. Let j+1 =» s.u+v, let E..,E2 be two equivalences such 

that E ^ E g and frq(Q,E .1) » frq(QfE2). Then frq(Qu+v,E1) -
frq(Qu+v,E2). 

Proof. For i-£u+v-1 it is I Qi| - (s-l).u+i-s.u+v-1 * j and 

by Theorem 0.5. frq(Qi,E1) • frq(QifE2). Analogiously, since v ^ j 
and s.u —j we have frqCK^E..) » frq(Kv,E2) and frq(s.Ku,E1) • 
frq(s.Ku,E2), i.e. <s.Ku,Ky>*E1 « (s.K^K^tEg. Now, we calculate 
using Lemma 1.4. 0 * <s.,Ku,Ky>|E1 - <s.Ku,Kv>|E2 = ^ ( B . ^ y 

HQ i . [ f rq (Q i ,E 1 ) - frq(Q± fE2)] + <s-Ku ,K v>HQu + v-[^q(Qu + v >E 1) -

- frq(Qu+v,E2)] + <s.Ku,Kv>HQ- [*rq(Q.B1) - frq(Q,E2)] - t a . K ^ ) 

**Qu+Y-l-ftwl(Qu+v'
B1) " *^q(Sx+v

fB2^# Since <s-Ku'V^Qu+v>0 we 

get finally frq(Ku+y,E1) « frq(Ku+v,E2). 
Definition 1.6. An equivalence E is called pseudoregular if 

there exist numbers s 2 - 0 , u> 0 , T » 0 such that E^s.K u + V 
Now, we are able to prove the main theorem. 
Theorem 1.7. Let k be an integer, Ei,E0 be equivalences. Fol­ic -<̂  \r 

lowing four properties are equivalent /i/ E.. ~ E 2 , /ii/ E1 ̂ 9" E2, 
/iii/ for every j ̂ k frq(K.,E..) « frq(K..,E2), /iv/ for every j-^k 
there is a pseudoregular equivalence S. such that I S.I « j and 
frqOjtB^ =- trq(SyE2). 

Proof. To prove the theorem it suffices to show that the im­
plication /iv/=^ /iii/ is true. We use an indirect argument. If 
the implication is false there exist i-<k such that frq(Kl,E1) 4 
4 frq(KifE2). Let i* - min <i; frqfK^E.j) t frq(Ki,E2)>. Obviously 
1 < i x ^ k and for j « i* - 1 we have by Theorem 0.5. E..X1 E2. We 
know that frq(S. -j.E..) « frq(S. ^E^p). Let c « min {cp S; S is 
pseudoregular, ISI « j+1, frq(S,E1) - frq(S,E2)>. Then 1<c^cp S^x. 
Take Q « s.K^ + Ky such that s> 0, u> 0, v> 0, I Ql « j+1, cp Q » 
« o - s+1. By Lemma 1.5. frq((s-l).Ku + K^^ E1) - frq((s-l).i5u + 
+ K u +v

, E2^ cpntradiotlng the minimality of c because op [(8-1).!^+ 
+ K u + V ] - S < c -

Theorem 1.8. Let k>0, E1»E2 be equivalences, E.. ~ E,-,. If the­
re exists a pseudoregular equivalence S such that |S| :£ k and 
frq(S,E1) * frq(S,E2) * 0 then S-,—Bg. 

Proof. Let n * I E ^ - I Egl, let S « s.Ku + K^ , Isl^k , 
frq(S,E1) =- frq(S,E2). For every integer w define Sw » s.K^ + KL« 
For w-Sv we have frq(Sw,E1) * frq(Sw,E2) » 0 and by Theorem 1.7. 
/property /iv// E ^ E g . It is 1 » frq(E .1 ,E .1) « frq(E1fE2) and 
clearly E ^ E g . 
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2. Bounds of reconstructibility and nonreconstructibility 

We are interested in the problem: for given k find n satisfy­
ing the implication (lE^ = IE2I - n et E1 ~ E2)

s=^ (E^Eg) where 
E.|, E2 are arbitrary equivalences. 

We denote cp.E the number of components of the equivalence E 
having at least i elements. Let us indicate two elementary facts: 
/fact 1/ I El « jjZ cpjE, /fact 2/ if frq(s.Ki,E)-^ 1 then cpjE-^s. 

Theorem 2.1. Let k>2, E1fE2 be equivalences, IE.I = lE2| ^ 
-<k.ln(k/2) where In denotes the logarithmus naturalis. If E.. "-6 Ep 
then B^Bg. 

Proof. Suppose E ^ E 2 and define for every i-£k the integral 
part of k/i denoted ti • [ k/i]. Now, for every i<k we have frq 
(ti.Ki,E1)>1 by Theorem 1.8. and moreover op^E^t^ by /fact 2/. 

k k k^l 
We calculate n = lE^ =- Jri°PiBi- J^-jt^ 5f(k/i - 1) =- (k.g-^l/i) + 

+ 1 > k.ln(k/2) + 1. We get a contradiction with the assumption 

that n<k.ln(k/2). 

Construction 2.2. For every k^1 we construct two equivalences 

E V E 2 such that B1 & E2, B^E^lE,.! » IE21 = (k+l).2k~1. 
Proof. For i=1,...,k+1 we define the numbers a.,, b. 
/n+1\ x x 

a^ = \ i I if i is even b± » 0 if i is even 
0 lf i is odd * (n+1) if i is odd . 

n+1\ m+1\ i P + 1 1 (n+1l 
The numbers a^b^ satisfy a^ - b. • (-1) \ i / , a, + b. » V ± ) . 

k+1 k+1 
We define E1 * 5 ^ . ^ , E 2 » 5r

bi* Ki* Ii; i s obvious that E^E2 

because E 2 has 1-point components but E.. has not. For every j, 
k+1 / i \ k+1 / i \ 

1 < 3 < k w e ca lculate frqtK.jE^ - frq(K,,E2) « ^ a ^ U / - ^ 3 b i * w 

3 f--3(ai ~ bi ) #(j) = S (~ 1 ) ± # ft1) -(d) " ° and we &et **q(Kji.E1) * 
= frq(K.,E2). It is E 1 ^ E 2 by Theorem 1.7. 

fctl k+1 
Final ly , we calculate | E J + JE2| • ^ ? a.^.i + J i r b j / i s 

k+1 k+1 /k+1\ . 
s ^ ( a i + b i ) # i " f F V i / - i « (k+1).2 , which y i e lds lE^ = | E 2 | * 

= ( k + l ) . 2 k - 1 . 
Remark 2.3> In [6] we have defined reconstructibility indica­

ting function u^of the class of graphs & . If we denote £ the 
class of all equivalences we can write the result of this paper in 

the form: for every k > 2 k.ln(k/2) ̂ Ug(k)< (k+:i) .2 k~ 1. 
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