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RECONSTRUCTING EQUIVALENCES

Véclav Nydl

Abgtract: A graph is called an equivalence if each of its com-
ponents of connectivity is a complete graph. We ask whether an equi-
valence is uniquely determined with its k-point subobjects. For
each k we prove: 1/Every equivalence on less than k.1ln(k/2)-point
set is uniquely determined with k-point subobjects; 2/It is not
true that every equivalence on at least (k+1).2k'1-point set is
uniquely determined with its k-point subobjects.

0. Introduction

We denote (V,W) the ordered pair where the first member is V
and the second one is W. PZ(X) denotes the set of all 2-point sub-
sets of the set X. An ordered pair G = (X,R) where Rc:P2(X) is cal-
led a graph and we denote |Gl = card X the number of points of X.
The complete graph on X is the graph <x,P2(x)) and we denote Kn the
standard complete graph on n-point set. For the graph G = (X,R)
and the set YCX we define the induced graph G/Y = (Y,R{)Pz(Y));
In usual sense we work with concepts in graph theory, namely the
connectivity of graphs, components of connectivity, isomorphism of
graphs. The number of components of G is denoted cp G; isomorphic
graphs are denoted G™~H and nonisomorphic graphs G H.

For every sequence of complete graphs Kn s eee s Kn it is

the standard sum K = Kn + oo + Kn with components of connectivi-

ty Cys eee s Cg satistying K/Ci Kn 4 ifn, = ... =ng =nwe wri-

te simply K = s.Kn

Definition 0.1. A graph E is called an equivalence if E is
isomorphic to a sum of complete graphs.

Definition 0.2. The frequency of the graph H in the graph G

This paper is in final form and no version of it will be sub-
mitted for publication elsewhere.
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is the number frq(H,G) = card {¥; G/Y=H}. For an integer k the no-
tation G1 fl\s Gy /G1 il‘ Gy respecively/ means that for every graph H
such that |H| = k /|H| =k, respectively/ the equality frq(H,6,) =
frq(H,Gz) holds.

Remark 0.3. An induced graph of an equivalence is an equivalence.
Thus, if E is an equivalence then frq(H,E)>0 if and only if H is
an equivalence.

We have showed in [6] the following theorem.

Theorem 0.4. Let k be an integer, G »Go be graphs. Following
three properties are equivalent /i/ Gy '-1662, /ii/ G, sk G,
/iii/ for every connected graph H, |H|<k, it is frq(H, G ) = frq(H,G,)
Now, for the case of equivalences we get:

Theorem 0.5. Let k be an integer, E1,E2kbe equivalencei. Follo-
wing three properties are equivalent /i/ E 1~ Eg /ii/ E, ~ Ep,-
/1ii/ for every j =k trq(K »Ey) = frq(K.j,E ).

Proof. Use Remark O. 3., Theorem 0.4. and the fact, that only
complete graphs are comnnected equivalences.

1. Frequencies in equivalences

Throughout this part of paper let A, B, C be equivalences, A =
= 8.K;, B = K, where s>0, u>0, v>0, Q = 3.K_  + K§ and for every
i1=su+wv Q4 = (s-1). K, + Ky

Definition 1.1. We define two numbers for any equivalence E
(A,BHE = card {(¥,2); E/Y~A,E/Z2~B} = frq(4,E).frq(B,E),
(A,B)YVE = card {<Y,2); E/Y~A,E/2=2B,YUZ = X}, where E = (X,R) .

Lemma 1.2. Let E be an equivalence. Then card{(Y,Z); C/Y™A,
€/2=2B,C/(YUZ)~E)} = [A,B)44ELErq(E,C) .

Proof. The number of the sets W such that C/W=E is £rq(E,C).
For each such a set W we have (A,B)}VE ordered pairs (Y,Z) satisfy-
ing C/Y=2A, C/2%B, W = YU Z,

Remark 1.3. Equivalences A,B in Lemma 1.2. can be arbitrary.

1.4. The following equality is true

(A,B)C = % [<a,Br44 Q] .£rq(Qy,C) + L4, B HQ,,1-fra(Q
+ [<A,B)>#¥Q].£frq(Q,C) .

Proof. We denote M, ={ (Y,2); C/Y<YA,C/Z™B }and further for
every i <usv My ={ (Y, ZH C/Y=A,C/72 B /(Y uZ)"'Q} Finally,
M = {(Y,2); C/Y=A,C/2%B,C/(YUZ)2Q), We have the disjoint decom-
position M, = MU ... UMy,y UM, JU M and we can write card M =

C) +

u+v’

-] .
= % oard M; + card M,,, + card M. Using Lemma 1.2. we obtain the
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needed equality.

Lemma 1.5. Let j+1 = s.us+v, let E1,E2 be two equivalences such
that E, & E, and frq(Q,Ey) = frq(Q,Ep). Then trq(Q,,,Eq) =
frq(Q st)

Proof. For i<usv-1 it is |Q| = (8-1).u+i =g, u+v-1 = j and
by Theorem 0.5. frq(Qi, E,) = frq(Q ) ). Analogiously, since v=j
and 8.u=<j we have frq(Kv,E ) = frq(K »E5) and frq(s.Ku,E ) =
frq(s.Ku,Ez), i.e. (s.K“,Kv)iE1 = (s.Ku K E,. Now, we calculate
using Lemma 1.4. 0 = <5-KuvaWE - (8.K,K ){E #T: (s.K,,K,

H4Q, .[£rq(Qy,E)) = £rq(Qq,E,)] + (8.K K }4Q,, o -[fra(Q,,»E,) -

- 2rq(Q,,+E,)] + (8 KK ¥¥Q.[£rq(Q,E,) - £rq(Q,E,)] =(s.K ,K )
W, .. [fra(Q,, ,E,) - fra(Q,,.»E,)]. Since (8.K,K, )&iq 4> 0 we
get finelly frq(K, .,E,) = frq(K  ..E, ).

Definition 1.6. An equivalence E is called pseudoregular if
there exist numbers s=0, u> 0, v>0 such that E’l'xa.Ku + Kv.

Now, we are able to prove the main theorem.

Theorem 1.7. Let k be an integer, E1,E2 be equivalences. Fol-
lowing four properties are equivalent /i/ E, rL"Ez, /11/ E, =k E,y
/iii/ for every j =k frq(Kj,E ) = frq(K E ), /iv/ tor every sk
there is a pseudoregular equivalence SJ auch that |S | = j and
frq(Sj,E1) = frq(SJ,Ez).

Proof. To prove the theorem it suffices to show that the im-
plication /iv/=> /iii/ is true. We use an indirect argument. If
the implication is false there exist i=<k such that frq(Ki,E ) #

# frq(K,E,). Let 1% = min {4; trq(K,,E,) # rrq(Ki,E )} Obviously
1<1!<k and for j = 1® - 1 we have by Tpeorem 0.5. E N E,. We
know that frq(SjH,E ) = £rq(S +17E2 ). Let ¢ = min {cp S; 8 is
pseudoregular, |S| = j+1, frq(S,E1) = frq(S,Ez))-. Then 1< c¢c=cp 5;®
Take Q = s.K‘_l + K, such that s>0, u>0, v>0, I1Ql = j+1, cp Q =
= ¢ = 8+1, By Lemma 1.5. frq((s-1).K, + Kyev, B ) = frq((s-1).K, +

+ K, v Ey) contradicting the minimality of ¢ because op [(8-1).K+
+ Kypv ]- s<c.

Theorem 1.8. Let k>0, E1,E2 be equivalences, E1f5 Ez. If the-
re exists a pseudoregular equivalence S such.that |S| <k and
frq(S,E,) < £rq(S,E,) = 0 then E,~E,.

Proof. Tet n = IE,| = IE,l, let 5= s.K, +K_, Isl=x,
frq(s, E,) = frq(S,E,). For every integer w define S_ = s.K, + K_.
For w‘<v we have rrq(S E ) = frq(S »E, ) = 0 and by Theorem 1.7.
/property /iv// E f\:EZ. It is 1 = frq(E1,E ) = frq(E,,E,) end
clearly E "‘E2
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2. Bounds of reconstructibility and nonreconstructibility

We are interested in the problem: for given k find n satisfy-
ing the implication (IE.II = |E2| =n et E, 'E:Ez)#(E{—“Ez) where
E1, E2 are arbitrary equivalences.

We denote cpiE the number of components of the equivalence E
having at least i1 elements. Let us indicate two elementary facts:
/tact 1/ |E|l = Z cp;E, /fact 2/ if frq(s.K;,E)=1 then cp,E=s.

Theorem 2.1. Let k>2, E,,E, be equivalences,|E1| = IE,| =
= k.1n(k/2) where ln denotes the logarithmus naturalis. If E1»-5 E,
then E —E2.

Proof. Suppose E ff-’Ez and define for every i<k the integral
part of k/i denoted t; = [x/i]. Now, for every i<k we have frq
(1::1_.1{1,E1 )= 1 by Theorem 1.8. and moreover cpiE1Z ty by /tact 2/.

k -
= = = > > # - = kfi‘
We calculate n IE1| = 5°04E= £ty =1(k/i 1) = (k. Z51/1)+
+ 1> k.1n(k/2) + 1. We get a contradiction with the assumption
that n<k.1ln(k/2).

Construction 2,2, For every k=1 we construct two equivalences
E,,E, such that E, & E,, BFE,,IE,| = IE| = (ke1).257T,
Pro:f. For i=1,...,k+1 we define the numbers 8y bi
ay = (n+ ) if i 1s even b, = 0 if i is even
0 if 1 is odd (®f) 1£ 1 is oaa .-
n+1 n+1
The numbers a;,b; satisfy a; - bi = (- 1t ). a; + by = ( 1) .

k+1
We define E, = ga,.K,, E, = Ebi.l{i. It is obvious that E1=;£E2

because E2 has 1-point components but E1 has not. For every j,

k+1 i k+1
1< J=<k we calculate frq(KJ,E ) - frq(KJ,Ez) = {:_jai.(j) }—bi ( )

- %]'3(31 - i) g( 1)1 k*‘ (3) = 0 and we get frq(Kj,E,) =

= frq(Kj,Ez). It is E ~E2 by Theorem 1.7,
k+1
Finally, we calculate |E,| + [E,| = é as.l + gbi.i =

ki1 kel (k1 K
= f:—1(ai+bi).i = E ( i ) i = (k+1).2%, which yields IE.II = |E,| =
= (k+1).2577,

Remark 2.3. In [ 6] we have defined reconstructibility indica-
ting function u, of the class of graphs £ . If we denote € the
class of all equivalences we can write the result of this paper in
the form: for every k>2 k.1n(k/2)=<u e(k)<(k+1) k-1,
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