| Title:
             | 
A characterization of the interval function of a (finite or infinite) connected graph (English) | 
| Author:
             | 
Nebeský, Ladislav | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
51 | 
| Issue:
             | 
3 | 
| Year:
             | 
2001 | 
| Pages:
             | 
635-642 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
By the interval function of a finite connected graph we mean the interval function in the sense of H. M.  Mulder. This function is very important for studying properties of a finite connected graph which depend on the distance between vertices. The interval function of a finite connected graph was characterized by the present author. The interval function of an infinite connected graph can be defined similarly to that of a finite one. In the present paper we give a characterization of the interval function of each connected graph. (English) | 
| Keyword:
             | 
distance in a graph | 
| Keyword:
             | 
interval function | 
| MSC:
             | 
05C12 | 
| idZBL:
             | 
Zbl 1079.05505 | 
| idMR:
             | 
MR1851552 | 
| . | 
| Date available:
             | 
2009-09-24T10:45:49Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127674 | 
| . | 
| Reference:
             | 
[1] H.-J.  Bandelt and V.  Chepoi: A Helly theorem in weakly modular space.Discrete Math. 160 (1996), 25–39. MR 1417558, 10.1016/0012-365X(95)00217-K | 
| Reference:
             | 
[2] H.-J.  Bandelt, M.  van de Vel and E.  Verheul: Modular interval spaces.Math. Nachr. 163 (1993), 177–201. MR 1235066, 10.1002/mana.19931630117 | 
| Reference:
             | 
[3] H. M.  Mulder: The Interval Function of a Graph.Mathematish Centrum, Amsterdam, 1980. Zbl 0446.05039, MR 0605838 | 
| Reference:
             | 
[4] H. M.  Mulder: Transit functions on graphs.In preparation. Zbl 1166.05019 | 
| Reference:
             | 
[5] L.  Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math. J. 44(119) (1994), 173–178. MR 1257943 | 
| Reference:
             | 
[6] L.  Nebeský: Characterizing the interval function of a connected graph.Math. Bohem. 123 (1998), 137–144. MR 1673965 | 
| . |