| Title:
|
Semiregularity of congruences implies congruence modularity at 0 (English) |
| Author:
|
Chajda, Ivan |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
52 |
| Issue:
|
2 |
| Year:
|
2002 |
| Pages:
|
333-336 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
We introduce a weakened form of regularity, the so called semiregularity, and we show that if every diagonal subalgebra of $\mathcal A \times \mathcal A$ is semiregular then $\mathcal A$ is congruence modular at 0. (English) |
| Keyword:
|
regularity |
| Keyword:
|
modularity |
| Keyword:
|
semiregularity |
| Keyword:
|
modularity at 0 |
| MSC:
|
08A30 |
| MSC:
|
08B10 |
| idZBL:
|
Zbl 1011.08002 |
| idMR:
|
MR1905440 |
| . |
| Date available:
|
2009-09-24T10:51:28Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127721 |
| . |
| Reference:
|
[1] S. Bulman-Fleming, A. Day and W. Taylor: Regularity and modularity of congruences.Algebra Universalis 4 (1974), 58–60. MR 0382118, 10.1007/BF02485707 |
| Reference:
|
[2] I. Chajda: Locally regular varieties.Acta Sci. Math. (Szeged) 64 (1998), 431–435. Zbl 0913.08006, MR 1666006 |
| Reference:
|
[3] I. Chajda and R. Halaš: Congruence modularity at 0.Discuss. Math., Algebra and Stochast. Methods 17 (1997), 57–65. MR 1633236 |
| . |