| Title:
             | 
On multiplicities of simple subquotients in generalized Verma modules (English) | 
| Author:
             | 
Khomenko, Alexandre | 
| Author:
             | 
Mazorchuk, Volodymyr | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
52 | 
| Issue:
             | 
2 | 
| Year:
             | 
2002 | 
| Pages:
             | 
337-343 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We reduce the problem on multiplicities of simple subquotients in an $\alpha $-stratified generalized Verma module to the analogous problem for classical Verma modules. (English) | 
| Keyword:
             | 
simple Lie algebra | 
| Keyword:
             | 
Verma module | 
| Keyword:
             | 
multiplicity | 
| MSC:
             | 
17B10 | 
| MSC:
             | 
22E47 | 
| idZBL:
             | 
Zbl 1008.17004 | 
| idMR:
             | 
MR1905441 | 
| . | 
| Date available:
             | 
2009-09-24T10:51:35Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127722 | 
| . | 
| Reference:
             | 
[1] J. L. Brylinski and M. Kashiwara: Kazhdan-Lusztig conjecture and holonomic systems.Inv. Math. 64 (1981), 387–410. MR 0632980, 10.1007/BF01389272 | 
| Reference:
             | 
[2] L. Casian and D. Collingwood: The Kazhdan-Lusztig conjecture for generalized Verma modules.Math. Z. 195 (1987), 581–600. MR 0900346, 10.1007/BF01166705 | 
| Reference:
             | 
[3] A. J. Coleman and V. M. Futorny: Stratified L-modules.J. Algebra 163 (1994), 219–234. MR 1257315 | 
| Reference:
             | 
[4] J. Dixmier: Algebres Enveloppantes.Gauthier-Villars, Paris, 1974. Zbl 0308.17007, MR 0498737 | 
| Reference:
             | 
[5] V. Futorny and V. Mazorchuk: Structure of $\alpha $-stratified modules for finite-dimensional Lie algebras.J. Algebra I, 183 (1996), 456–482. MR 1399036, 10.1006/jabr.1996.0229 | 
| Reference:
             | 
[6] A. Khomenko and V. Mazorchuk: Generalized Verma modules over the Lie algebra of type $G_2$.Comm. Algebra 27 (1999), 777–783. MR 1671979, 10.1080/00927879908826460 | 
| Reference:
             | 
[7] O. Mathieu: Classification of irreducible weight modules.Ann. Inst. Fourier (Grenoble) 50 (2000), 537–592. Zbl 0962.17002, MR 1775361, 10.5802/aif.1765 | 
| Reference:
             | 
[8] V. S. Mazorchuk: The structure of an $\alpha $-stratified generalized Verma module over Lie Algebra $\mathop {\mathrm sl}(n,{\mathbb{C}})$.Manuscripta Math. 88 (1995), 59–72. MR 1348790, 10.1007/BF02567805 | 
| Reference:
             | 
[9] A. Rocha-Caridi: Splitting criteria for $G$-modules induced from a parabolic and a Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible $G$-module.Trans. Amer. Math. Soc. 262 (1980), 335–366. MR 0586721 | 
| . |