| Title:
|
A new approach to solving a quasilinear boundary value problem with $p$-Laplacian using optimization (English) |
| Author:
|
Bailová, Michaela |
| Author:
|
Bouchala, Jiří |
| Language:
|
English |
| Journal:
|
Applications of Mathematics |
| ISSN:
|
0862-7940 (print) |
| ISSN:
|
1572-9109 (online) |
| Volume:
|
68 |
| Issue:
|
4 |
| Year:
|
2023 |
| Pages:
|
425-439 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
We present a novel approach to solving a specific type of quasilinear boundary value problem with $p$-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for $p=2$. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach. (English) |
| Keyword:
|
$p$-Laplacian operator |
| Keyword:
|
quasilinear elliptic PDE |
| Keyword:
|
critical point and value |
| Keyword:
|
optimization algorithm |
| Keyword:
|
gradient method |
| MSC:
|
35B38 |
| MSC:
|
35J92 |
| MSC:
|
65N30 |
| idZBL:
|
Zbl 07729505 |
| idMR:
|
MR4612741 |
| DOI:
|
10.21136/AM.2023.0194-22 |
| . |
| Date available:
|
2023-07-10T14:11:20Z |
| Last updated:
|
2025-09-01 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151703 |
| . |
| Reference:
|
[1] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381 \99999DOI99999 10.1016/0022-1236(73)90051-7 . Zbl 0273.49063, MR 0370183, 10.1016/0022-1236(73)90051-7 |
| Reference:
|
[2] Bailová, M., Bouchala, J.: A mountain pass algorithm for quasilinear boundary value problem with $p$-Laplacian.Math. Comput. Simul. 189 (2021), 291-304 \99999DOI99999 10.1016/j.matcom.2021.03.006 . Zbl 07431491, MR 4297869 |
| Reference:
|
[3] Barutello, V., Terracini, S.: A bisection algorithm for the numerical mountain pass.NoDEA, Nonlinear Differ. Equ. Appl. 14 (2007), 527-539 \99999DOI99999 10.1007/s00030-007-4065-9 . Zbl 1141.46036, MR 2374198 |
| Reference:
|
[4] Bouchala, J., Drábek, P.: Strong resonance for some quasilinear elliptic equations.J. Math. Anal. Appl. 245 (2000), 7-19 \99999DOI99999 10.1006/jmaa.2000.6713 . Zbl 0970.35062, MR 1756573 |
| Reference:
|
[5] Chen, G., Zhou, J., Ni, W.-M.: Algorithms and visualization for solutions of nonlinear elliptic equations.Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 (2000), 1565-1612 \99999DOI99999 10.1142/S0218127400001006 . Zbl 1090.65549, MR 1780923 |
| Reference:
|
[6] Choi, Y. S., McKenna, P. J.: A mountain pass method for the numerical solution of semilinear elliptic problems.Nonlinear Anal., Theory Methods Appl. 20 (1993), 417-437 \99999DOI99999 10.1016/0362-546X(93)90147-K . Zbl 0779.35032, MR 1206432 |
| Reference:
|
[7] Ding, Z., Costa, D., Chen, G.: A high-linking algorithm for sign-changing solutions of semilinear elliptic equations.Nonlinear Anal., Theory Methods Appl. 38 (1999), 151-172 \99999DOI99999 10.1016/S0362-546X(98)00086-8 . Zbl 0941.35023, MR 1697049 |
| Reference:
|
[8] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.de Gruyter Series in Nonlinear Analysis and Applications 5. Walter de Gruyter, Berlin (1997),\99999DOI99999 10.1515/9783110804775 . Zbl 0894.35002, MR 1460729 |
| Reference:
|
[9] Horák, J.: Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems.Numer. Math. 98 (2004), 251-276 \99999DOI99999 10.1007/s00211-004-0544-7 . Zbl 1058.65129, MR 2092742 |
| Reference:
|
[10] Horák, J., Holubová, G., (eds.), P. Nečesal: Proceedings of Seminar in Differential Equations: Deštné v Orlických horách, May 21-25, 2012. Volume I. Mountain Pass and Its Applications in Analysis and Numerics.University of West Bohemia, Pilsen (2012) . |
| Reference:
|
[11] Huang, Y. Q., Li, R., Liu, W.: Preconditioned descent algorithms for $p$-Laplacian.J. Sci. Comput. 32 (2007), 343-371. Zbl 1134.65079, MR 2320575, 10.1007/s10915-007-9134-z |
| Reference:
|
[12] Kippenhahn, R., Weigert, A., Weiss, A.: Stellar Structure and Evolution.Astronomy and Astrophysics Library. Springer, Berlin (2012). 10.1007/978-3-642-30304-3 |
| Reference:
|
[13] Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDEs.SIAM J. Sci. Comput. 23 (2001), 840-865 \99999DOI99999 10.1137/S1064827599365641 . Zbl 1002.35004, MR 1860967 |
| Reference:
|
[14] Shen, Q.: A meshless scaling iterative algorithm based on compactly supported radial basis functions for the numerical solution of Lane-Emden-Fowler equation.Numer. Methods Partial Differ. Equations 28 (2012), 554-572 \99999DOI99999 10.1002/num.20635 . Zbl 1457.65232, MR 2879794 |
| Reference:
|
[15] Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 34. Springer, Berlin (2000),\99999DOI99999 10.1007/978-3-662-04194-9 . Zbl 0939.49001, MR 1736116 |
| Reference:
|
[16] Tacheny, N., Troestler, C.: A mountain pass algorithm with projector.J. Comput. Appl. Math. 236 (2012), 2025-2036 \99999DOI99999 10.1016/j.cam.2011.11.011 . Zbl 1245.65075, MR 2863532 |
| Reference:
|
[17] Willem, M.: Minimax Theorems.Progress in Nonlinear Differential Equations and their Applications 24. Birkhäuser, Boston (1996),\99999DOI99999 10.1007/978-1-4612-4146-1 . Zbl 0856.49001, MR 1400007 |
| Reference:
|
[18] Yao, X., Zhou, J.: A minimax method for finding multiple critical points in Banach spaces and its application to quasi-linear elliptic PDE.SIAM J. Sci. Comput. 26 (2005), 1796-1809. Zbl 1078.58009, MR 2142597, 10.1137/S1064827503430503 |
| . |